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1 Density Functional Theory

Density Functional Theory (DFT) is a ground-state theory in which the emphasis is on the charge
density as the relevant physical quantity. DFT has proved to be highly successful in describing
structural and electronic properties in a vast class of materials, ranging from atoms and molecules
to simple crystals to complex extended systems (including glasses and liquids). Furthermore DFT is
computationally very simple. For these reasons DFT has become a common tool in first-principles
calculations aimed at describing – or even predicting – properties of molecular and condensed
matter systems.

1.1 The Hohenberg-Kohn Theorem

Let us consider a system of N interacting (spinless) electrons under an external potential V (r)
(usually the Coulomb potential of the nuclei). If the system has a nondegenerate ground state, it
is obvious that there is only one ground-state charge density n(r) that corresponds to a given V (r).
In 1964 Hohenberg and Kohn demonstrated the opposite, far less obvious result: there is only one
external potential V (r) that yields a given ground-state charge density n(r). The demonstration
is very simple and uses a reductio ad absurdum argument.

Let us consider a many-electron Hamiltonian H = T +U + V , with ground state wavefunction
Ψ . T is the kinetic energy, U the electron-electron interaction, V the external potential. The
charge density n(r) is defined as

n(r) = N

∫
|Ψ(r, r2, r3, ..., rN )|2dr2...drN . (1)

Let us consider now a different Hamiltonian H ′ = T +U+V ′ (V and V ′ do not differ simply by
a constant: V − V ′ 6=const.), with ground state wavefunction Ψ′. Let us assume that the ground
state charge densities are the same: n[V ] = n′[V ′]. The following inequality holds:

E′ = 〈Ψ′|H ′|Ψ′〉 < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H + V ′ − V |Ψ〉 (2)

that is,

E′ < E +
∫

(V (r)− V ′(r))n(r)dr. (3)

The inequality is strict because Ψ and Ψ′ are different, being eigenstates of different Hamiltonians.
By reversing the primed and unprimed quantities, one obtains an absurd result. This demonstrates
that no two different potentials can have the same charge density.

A subtle point about the existence of the potential corresponding to a given ground state charge
density (the v-representability problem), and the various extensions of the Hohenberg and Kohn
theorem, are discussed in the specialized literature.

A straightforward consequence of the first Hohenberg and Kohn theorem is that the ground
state energy E is also uniquely determined by the ground-state charge density. In mathematical
terms E is a functional E[n(r)] of n(r). We can write

E[n(r)] = 〈Ψ|T + U + V |Ψ〉 = 〈Ψ|T + U |Ψ〉+ 〈Ψ|V |Ψ〉 = F [n(r)] +
∫
n(r)V (r)dr (4)

where F [n(r)] is a universal functional of the charge density n(r) (and not of V (r)). For this
functional a variational principle holds: the ground-state energy is minimized by the ground-state
charge density. In this way, DFT exactly reduces the N -body problem to the determination of a
3-dimensional function n(r) which minimizes a functional E[n(r)]. Unfortunately this is of little
use as F [n(r)] is not known.

1.2 The Kohn-Sham equations

One year later, Kohn and Sham (KS) reformulated the problem in a more familiar form and opened
the way to practical applications of DFT. The system of interacting electrons is mapped on to an
auxiliary system of non-interacting electrons having the same ground state charge density n(r).
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For a system of non-interacting electrons the ground-state charge density is representable as a sum
over one-electron orbitals (the KS orbitals) ψi(r):

n(r) = 2
∑

i

|ψi(r)|2, (5)

where i runs from 1 to N/2 if we assume double occupancy of all states, and the KS orbitals are
the solutions of the Schrödinger equation(

− h̄2

2m
∇2 + VKS(r)

)
ψi(r) = εiψi(r) (6)

(m is the electron mass) obeying orthonormality constraints:∫
ψ∗i (r)ψj(r)dr = δij . (7)

The existence of a unique potential VKS(r) having n(r) as its ground state charge density is a
consequence of the Hohenberg and Kohn theorem, which holds irrespective of the form of the
electron-electron interaction U .

1.3 Kohn-Sham equations and the variational principle

The problem is now to determine VKS(r) for a given n(r). This problem is solved by considering the
variational property of the energy. For an arbitrary variation of the ψi(r), under the orthonormality
constraints of Eq. (7), the variation of E must vanish. This translates into the condition that the
functional derivative (see appendix) with respect to the ψi of the constrained functional

E′ = E −
∑
ij

λij

(∫
ψ∗i (r)ψj(r)dr− δij

)
, (8)

where λij are Lagrange multipliers, must vanish:

δE′

δψ∗i (r)
=

δE′

δψi(r)
= 0. (9)

It is convenient to rewrite the energy functional as follows:

E = Ts[n(r)] + EH [n(r)] + Exc[n(r)] +
∫
n(r)V (r)dr. (10)

The first term is the kinetic energy of non-interacting electrons:

Ts[n(r)] = − h̄2

2m
2
∑

i

∫
ψ∗i (r)∇2ψi(r)dr. (11)

The second term (called the Hartree energy) contains the electrostatic interactions between clouds
of charge:

EH [n(r)] =
e2

2

∫
n(r)n(r′)
|r− r′|

drdr′. (12)

The third term, called the exchange-correlation energy, contains all the remaining terms: our
ignorance is hidden there. The logic behind such procedure is to subtract out easily computable
terms which account for a large fraction of the total energy.

Using
δn(r)
δψ∗i (r′)

= ψi(r)δ(r− r′) (13)

and the formulae given in the appendix, one finds

δTs

δψ∗i (r)
= − h̄2

2m
2
∑

i

∇2ψi(r), (14)

4



δEH

δψ∗i (r)
= e2

∫
n(r′)
|r− r′|

dr′ψi(r) (15)

and finally (
− h̄2

2m
∇2 + VH(r) + Vxc[n(r)] + V (r)

)
ψi(r) =

∑
j

λijψj(r) (16)

where we have introduced a Hartree potential

VH(r) = e2
∫

n(r′)
|r− r′|

dr′ (17)

and an exchange-correlation potential

Vxc[n(r)] =
δExc

δn(r)
. (18)

The Lagrange multiplier λij are obtained by multiplying both sides of Eq.16 by ψ∗k(r) and inte-
grating:

λik =
∫
ψ∗k(r)

(
− h̄2

2m
∇2 + VH(r) + Vxc[n(r)] + V (r)

)
ψi(r)dr. (19)

For an insulator, whose states are either fully occupied or completely empty, it is always possible
to make a subspace rotation in the space of ψ’s (leaving the charge density invariant). We finally
get the KS equations:

(HKS − εi)ψi(r) = 0, (20)

where λij = δijεj and the operator HKS , called KS Hamiltonian, is defined as

HKS = − h̄2

2m
∇2 + VH(r) + Vxc(r) + V (r) ≡ − h̄2

2m
∇2 + VKS(r) (21)

and is related to the functional derivative of the energy:

δE

δψ∗i (r)
= HKSψi(r). (22)

1.4 DFT, Hartree-Fock, and Slater’s exchange

The KS equations are somewhat reminiscent of the Hartree-Fock (HF) equations. Both are derived
from a variational principle: the minimization of the energy functional for the latter, of the energy
for a single Slater determinant wavefunction for the former. Both are self-consistent equations for
one-electron wavefunctions. In the HF equations the exchange term appears in the place of the
exchange-correlation potential of KS equations:(

− h̄2

2m
∇2 + VH(r) + V (r)

)
ψi(r) + e2

∑
j,‖

∫
ψj(r)ψ∗j (r′)
|r− r′|

ψi(r′)dr′ = εiψi(r) (23)

where the sum over j extends only to states with parallel spins. Traditionally, one defines the
correlation energy as the difference between the HF and the real energy. The name “exchange-
correlation” in DFT reflects such tradition, although the exchange-correlation energy of DFT is not
exactly the same as HF exchange plus correlation energy: in fact the former contains a contribution
coming from the difference between the true many-body kinetic energy 〈Ψ|T |Ψ〉 and the kinetic
energy Ts[n(r)] of non-interacting electrons.

The exchange term in the HF equations is a nonlocal operator – one acting on a function φ
as (V φ)(r) =

∫
V (r, r′)φ(r′)dr′, and is quite difficult to compute. In earlier calculations, done

with primitive computer machinery (or even without any computer machinery), an approximated
form was often used. In the homogeneous electron gas, the average exchange energy and exchange
potential for an electron are

〈εx〉 = −3
4
e2kF

π
, 〈vx〉 = −3

2
e2kF

π
(24)
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where kF is the Fermi wavevector: kF = (3π2n)1/3. In 1951 Slater proposed to replace the nonlocal
exchange potential with the above form valid for the homogeneous electron gas, with kF evaluated
at the local density. This procedure yields a local (multiplicative) exchange potential

Vx(r) = −3e2

2π
[
3π2n(r)

]1/3
, (25)

sometimes multiplied by coefficient α varying between 2/3 and 1 as an adjustable parameter.
This approximation was rather popular in early solid-state physics but was never regarded as an
especially good one (and it wasn’t, actually).

1.5 Local Density Approximation for the exchange-correlation energy

We still don’t have a reasonable estimate for the exchange-correlation energy Exc[n(r)]. Kohn and
Sham introduced, as early as 1965, the Local Density Approximation (LDA): they approximated
the functional with a function of the local density n(r) :

Exc[n(r)] =
∫
εxc(n(r))n(r)dr,

δExc

δn(r)
≡ µxc(n(r)) =

(
εxc(n) + n

dεxc(n)
dn

)
n=n(r)

(26)

and for εxc(n(r)) used the same dependence on the density as for the homogeneous electron gas
(also known as jellium) for which n(r) is constant.

Even in such simple case the exact form of ε(n) is unknown (except at the HF level, see above).
However, approximate forms have been known for a long time, going back to Wigner (1931).
Numerical results from Monte-Carlo calculations (in principle exact) by Ceperley and Alder have
been parameterized by Perdew and Zunger with a simple analytical form:

εxc(n) = −0.4582/rs − 0.1423/(1 + 1.0529
√
rs + 0.3334rs) , rs ≥ 1

= −0.4582/rs − 0.0480 + 0.0311 ln rs − 0.0116rs + 0.0020rs ln rs , rs ≤ 1 (27)

where rs is the usual parameter appearing in the theory of metals: rs = (3/4πn)1/3, and atomic
units are used (e2 = h̄ = m = 1: lengths in Bohr radii, energies in Hartree=27.2 eV). Following HF
tradition, the first term is called “exchange” (it has the same form as Slater’s local approximation
to exchange), the remaining terms “correlation”. We note however that such distinction is to
some extent arbitrary. Actually it has been shown that LDA contains a fair amount of error
compensation between “exchange” and “correlation”.

The Perdew-Zunger form for εxc is often used. Several other expressions have appeared in
the literature. All forms yield very similar results in condensed-matter calculations, which is not
surprising, since all parameterizations are very similar in the range of rs applicable for solid-state
phenomena.

1.6 Successes and failures of DFT

DFT, even in the simplest LDA approximation, turns out to be much more successful than ex-
pected. LDA is computationally much simpler than HF, yet it yields results of similar quality in
atoms and molecules – highly inhomogeneous systems for which an approximation based on the
homogeneous electron gas would hardly look appropriate. Structural and vibrational properties of
solids are in general accurately described: the correct crystal structure is usually found to have the
lowest energy; bond lengths, bulk moduli, phonon frequencies are accurate within a few percent.

LDA also has some well-known problems. Some can be avoided by using better functionals,
some others have a deeper and more fundamental nature.

1.6.1 Accuracy of LDA, gradient corrections

The accuracy of LDA is often considered satisfactory in condensed-matter systems, but it is much
less so in atomic and molecular physics, for which highly accurate experimental data are avail-
able. Also, LDA badly overestimates (∼ 20% and more) cohesive energies and bond strengths in
molecules and solids, and as a consequence bond lengths are often underestimated.
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Such problems are mostly corrected by the introduction of gradient corrections. The exchange-
correlation functional is written as a function of the local density and of the local gradient of the
density:

Exc[n(r)] =
∫
εxc(n(r), |∇n(r)|)n(r)dr. (28)

Gradient-corrected functionals are the simplest extension – although not problem-free – of LDA to
inhomogeneous systems one can think of. Their adoption has been quite slow, but finally they have
found widespread acceptance. Gradient-corrected functionals yield much better atomic energies
and binding energies than LDA, at a modest additional computational cost. In particular, they
yield a good description of the Hydrogen bond, thus opening the way to calculations for systems,
such as water, in which Hydrogen bonds play a crucial role (LDA is unusable for those systems:
the Hydrogen bond in LDA is way too strong).

The weak van der Waals forces between closed-shells systems, that are responsible for the
physisorption, are still beyond the reach of DFT. The van der Waals (or dispersive) interactions
have a non-local character: they are due to charge fluctuations on one system, inducing a dipole on
the other. This phenomenon is absent by construction from LDA, as well as from any functional
based on the local density and on its local derivatives: these can reproduce only phenomena due
to charge overlap. Since however LDA overestimates the attractive potential coming from the
overlap of the tails of the charge density, closed-shell systems in LDA are actually bound with
binding energies and binding distances in apparent agreement with experimental results. This
is a fictitious result (and the dependence on the separation distance is wrong) that disappear if
better-behaved gradient-corrected functionals are used.

1.6.2 Self-interaction

Self-interaction, i.e. the interaction of an electron with the field it generates, should cancel exactly,
as it does in HF, by construction. The cancellation is actually quite good: in the H atom, the
exchange-correlation and Hartree energy typically cancel within 5%, but they do not cancel exactly
with current DFT approximations. Recipes for “Self-Interaction Correction” (SIC) exist, but their
usefulness is limited or unclear.

The self-interaction affects finite systems, or systems containing localized electrons, while its
effect is vanishing for delocalized electronic states in extended systems (solids). In finite systems
the presence of self-interaction is reflected in an incorrect long-range behavior of the potential felt
by an electron. For an atom, we should have Vxc(r) → −1/r for r → ∞, but current functionals
yield instead a potential that decays exponentially.

A remarkable example of the effects of self-interaction is the Al defect in SiO2. In SiO2, four
O atoms are bound to a Si atom, forming a tetrahedron; each O is shared between two such
tetrahedra. The strong bonding involves the sp3 hybrid Si orbital and the 2p O orbitals. The
presence of Al introduces a “hole”in the electronic structure. In DFT, one finds that the “hole” is
evenly distributed on the Al-O bonds and that the local structure is still tetrahedral. Experiments
show however that the hole is localized on one of the Al-O bonds, that is longer and weaker than
the three others, thus yielding a local distorted structure around Al. The reason for this failure –
affecting not only LDA but gradient corrections as well – has been tracked to self-interaction.

1.6.3 Strongly correlated electrons

Current DFT approximations often fail to correctly describe strongly correlated materials. These
systems contain localized, atomic-like electronic states, typically originating from d or f atomic
states, together with delocalized, band-like states originating from s and p states. The one-electron
way of filling KS orbitals may break down: adding an electron to a localized state pushes the level up
in energy, due to strong electron correlation (i.e. Coulomb repulsion between electrons). A famous
example of failure is NiO: an insulator with a simple structure, that current DFT approximations
consistently predict to be a metal. A similar behavior is displayed by K4C60, even if no d or f
states are present: in this case the electron correlation on the C60 molecule is responsible.
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1.6.4 The “band gap problem”

One would like very much to be able to calculate one-electron energies having the meaning of
removal (or addition) energies, as for a non interacting system (in the language of many-body
theory, quasiparticle energies). If one electron in the state v is removed from the system, EN −
EN−1 = εv, where EN is the energy of the system with N electrons. If one electron is added to the
system in the state c, EN+1 − EN = εc. The difference between the largest addition energy and
the smallest removal energy defines the energy band gap: Eg = εc − εv = EN+1 + EN−1 − 2EN .
In solids this is the onset of the continuum of optical transitions, if the gap is direct (if the lowest
empty state and the highest filled state have the same k vector). From atomic and molecular
physics, the highest occupied and lowest unoccupied states are respectively called HOMO (Highest
Occupied Molecular Orbital) and LUMO (Lowest Unoccupied MO), while addition and removal
energy are respectively called electron affinity, A, and ionization potential, I.

In HF the one-electron energies have the meaning of removal (or addition) energies for extended
systems (Koopman’s theorem). If the world were described by single Slater determinants, the dif-
ference between the LUMO and HOMO one-electron HF energies would yield the real energy gaps
in solids (neglecting polarization effects, i.e. the change in the one-electron states upon addition
or removal of an electron). Since the world is not well described by single Slater determinants, the
band gap is usually quite overestimated in HF (with the true exchange potential, not Slater’s local
approximation).

In DFT, the one-electron energies have acquired a rather bad reputation, mostly due to the
failure of KS band gaps (that is: calculated as the difference between LUMO and HOMO KS
energies) to reproduce with an acceptable accuracy the true band gap in solids: gaps in DFT are
strongly underestimated (up to 50%). One may say that after all DFT is a ground state theory,
and that KS eigenvalues and eigenvectors are purely mathematical quantities without any physical
meaning, but it wouldn’t be a very satisfactory answer. It can be demonstrated that in exact DFT,
I = −εHOMO holds. In finite systems ionization potentials and electron affinities can be calculated
as energy differences between the ground state and a state with one electron added or removed.
In extended systems this is of course not possible.

The reason for the infamous “band gap problem” lies in the dependence of the exact energy
functional upon the number of electrons and in the inability of approximate functionals to reproduce
it. In the next section we consider the extension of DFT to a fractionary number of electrons.

1.6.5 The discontinuity of exchange-correlation potential

The basic variational property of the density functional can be expressed by the stationary condi-
tion

δ

δn(r)

(
E − µ

(∫
n(r)dr−N

))
= 0 (29)

where µ is a Lagrange multiplier and N an integer number. The formulation of DFT can be
extended to noninteger number of particles N + ω (ω > 0) via the following definition:

E[n(r)] = Ffrac[n(r)] +
∫
V (r)n(r)dr (30)

and
Ffrac[n(r)] = min tr{D(T + U)}, D = (1− ω)|ΨN 〉〈ΨN |+ ω|ΨN+1〉〈ΨN+1| (31)

where the minimum must be searched on all density matrices D that yield the prescribed density
n(r). It is easily verified that integration of n(r) over all space yields N + ω electrons. With this
definition the variational principle, Eq. 29, is defined for any number of electrons and yields the
Euler equations

δE

δn(r)
= µ (32)

and that µ is really the chemical potential: if we call EN the energy at the ground state for N
electrons, one has

µ(N) =
∂EN

∂N
. (33)
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There is an obvious problem if we consider µ(N) a continuous function of N for all values of
N . Consider two neutral isolated atoms: in general, they will have two different values for µ. As a
consequence the total energy of the two atoms will be lowered by a charge transfer from the atom
at a higher chemical potential to the one at lower chemical potential.

In reality there is no paradox, because the EN curve is not continuous. If we write down
explicitly EN+ω, we find that both energy and minimizing charge density at fractionary number
of electrons are simply a linear interpolation between the respective values at the end points with
N and N + 1 electrons:

EN+ω = (1− ω)EN + ωEN+1, nN+ω(r) = (1− ω)nN (r) + ωnN+1(r) (34)

with obvious notations. The interesting and far-reaching consequence is that there is a discontinuity
of the chemical potential µ(N) and of the functional derivative δE/δn(r) at integer N . This is
an important and essential characteristic of the exact energy functional that simply reflects the
discontinuity of the energy spectrum.

Coming back to our paradox: for an atom with nuclear charge Z, ionization potential I(Z) and
electron affinity A(Z) in the ground state,

µ(N) = −I(Z) Z − 1 < N < Z (35)
= −A(Z) Z < N < Z + 1. (36)

For a system of two neutral atoms with nuclear charges X and Y , in which ω electrons are trans-
ferred from the first to the second atom:

µ(ω) = µ(0) + I(Y )−A(X) − 1 < ω < 0 (37)
= µ(0) + I(X)−A(Y ) 0 < ω < 1. (38)

Since the largest A (3.62 eV, for Cl) is still smaller than the smallest I (3.89 eV, for Cs), the
neutral ground state is stable.

1.6.6 Band gaps and discontinuity of exchange-correlation potential

A consequence of the results of the previous section is that the true band gap of a solid, Eg = I−A,
can be written as

Eg = −µ(N − δ) + µ(N + δ) =
δE

δn(r)

∣∣∣∣
N+δ

− δE

δn(r)

∣∣∣∣
N−δ

(39)

with δ → 0.
Let us substitute to E[n(r)] the explicit KS form, Eq.10. The Hartree and external potential

terms of the functional will yield no discontinuity and no contribution to Eg. Only the kinetic and
exchange-correlation terms may have a discontinuity and contribute to Eg.

For a non interacting system, only the kinetic term contributes, and the gap is exactly given
by the KS gap:

EKS
g =

δTs

δn(r)

∣∣∣∣
N+δ

− δTs

δn(r)

∣∣∣∣
N−δ

= εLUMO − εHOMO. (40)

We remark that even the kinetic energy of non interacting electrons, considered as a functional of
the density, must have a discontinuous derivative when crossing an integer number of electrons.
This is one reason why it is so difficult to produce explicit functionals of the charge density for Ts

that are able to yield good results: no simple functional form will yield the discontinuity, but this
is needed in order to get the correct energy spectrum.

For the interacting system:

Eg =
δTs

δn(r)

∣∣∣∣
N+δ

− δTs

δn(r)

∣∣∣∣
N−δ

+
δExc

δn(r)

∣∣∣∣
N+δ

− δExc

δn(r)

∣∣∣∣
N−δ

= EKS
g + Exc

g . (41)

Note that the kinetic term is evaluated at the same charge density as for the non interacting
system, so it coincides with the KS gap.
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In conclusion: the KS gaps are not, by construction, equal to the true gap, because they
are missing a term (Exc

g ) coming from the discontinuity of derivatives of the exchange-correlation
functional. This is absent by construction from any current approximated functional (be it LDA or
gradient-corrected or more complex). There is some evidence that this missing term is responsible
for a large part of the band gap problem, at least in common semiconductors.

1.7 Adiabatic continuation formula and the exchange-correlation hole

The exchange-correlation energy can be recast into a form that sheds some light on the unexpected
success of LDA and gives a possible path for the production of better functionals. One considers
a system in which the Coulomb interaction between electrons is adiabatically switched on:

Uλ = λ
e2

2

∑
i,j

1
|ri − rj |

= λU (42)

where λ is a parameter that goes from λ = 0, for the noninteracting system, to λ = 1, for the
true interacting system. The charge density is forced to remain equal to the charge density of the
interacting system:

nλ(r) = n(r), (43)

while the potential Vλ will depend on λ. At λ = 0 the potential is nothing but the KS potential:
and the energy functional at λ = 0 has the simple form:

E0 = Ts[n(r)] +
∫
n(r)VKS(r)dr. (44)

The following step is to write the energy functional for the true interacting system as an integral
of the derivative with respect to λ:

E1 = E0 +
∫ 1

0

dEλ

dλ
dλ. (45)

The derivative can be simply expressed using the Hellmann-Feynman theorem:

dEλ

dλ
= 〈Ψλ|

∂H

∂λ
|Ψλ〉 (46)

(see section on Hellmann-Feynman forces for the demonstration). Explicitly:

dEλ

dλ
= 〈Ψλ|U |Ψλ〉+ 〈Ψλ|

∂Vλ

∂λ
|Ψλ〉. (47)

By performing the integration, one finally finds

Exc =
1
2

∫
fxc(r, r′)
|r− r′|

n(r)drdr′ (48)

where fxc(r, r′) is the exchange-correlation hole: the charge missing around a point r due to
exchange effects (Pauli antisymmetry) and to Coulomb repulsion. The exchange-correlation hole
obeys the sum rule ∫

fxc(r, r′)dr′ = −1. (49)

The exchange-correlation hole is related to the pair correlation function g(r, r′), giving the proba-
bility to find an electron in r′ if there is already one in r. Its exact definition is:

fxc(r, r′) = n(r′)
∫ 1

0

(gλ(r, r′)− 1) dλ (50)

where gλ(r, r′) is the pair correlation function the system having the electron-electron interaction
multiplied by λ, Eq.(42). In homogeneous systems fxc(r, r′) and g(r, r′) are well known and
studied functions. It has been shown that in inhomogeneous systems LDA does not give a good
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approximation for fxc(r, r′). However LDA yields a very good approximation for its spherical part
fxc(r, s):

f̃xc(r, s) =
∫
fxc(r, r + sr̂)

dr̂

4π
. (51)

It is easily shown the Eq.48 depends only on the spherical part of the exchange-correlation hole:

Exc =
1
2

∫
f̃xc(r, s)

s
n(r)drds. (52)

This explains at least partially the good performances of LDA. The above procedure is a good
starting point in the search for better functional, via better modeling of the exchange-correlation
hole.

1.8 The exact exchange-correlation potential from many-body theory

Many-body perturbation theory yields the following exact solution for the many-body problem:(
− h̄2

2m
∇2 + V (r) + VH(r)− εi

)
ψi(r) +

∫
Σ(r, r′, εi)ψi(r′)dr′ = 0 (53)

where the self-energy Σ(r, r′, ε) is a complex, nonlocal, energy-dependent operator, the ψi(r) and
εi have the physical meaning of quasiparticle states and energies. The energies εi are also complex
and their imaginary part is related to the lifetime of the state.

Both DFT and many-body perturbation theory are exact on the ground state (and the latter
also on excited states). This implies

n(r) =
∫

ImGDFT(r, r, ε)dε =
∫

ImG(r, r, ε)dε (54)

where G(r, r′, ε) is the Green’s function of the system, GDFT(r, r′, ε) is the same in DFT, and
the integration extends to the energies of occupied states. The Dyson equation must also apply
between G and GDFT:

G = GDFT +GDFT (Σ− Vxc)G. (55)

By combining the above equations, one finally gets the following result:

Im
∫

[GDFT (Σ− Vxc)G]r=r′ = 0. (56)

This equation can be used to deduce the exact exchange-correlation potential. Practical many-
body perturbation theory calculations are very difficult but not impossible. Some test calculations
on simple systems have shown that the LDA Vxc is a good approximation to the true Vxc.
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2 Practical DFT calculations

2.1 Atoms

Atomic DFT calculations are usually performed assuming a spherically averaged charge density.
For closed-shell atoms, such procedure does not introduce any approximation, while for open-shell
atoms, it introduces an error that turns out to be quite small (it can be accounted for using
perturbation theory if a higher accuracy is desired). Under such assumption, an atom can be
described as in elementary Quantum Mechanics by an electronic configuration 1s22s22p6...: the
KS equation has spherical symmetry and is separable into a radial equation and an angular part
(whose solutions are the spherical harmonics). The solution of the KS equations for an atom
proceeds as follows. For a given electronic configuration, and starting from some initial guess of
the KS potential,

• the radial KS equations are solved for those radial orbitals that correspond to occupied states;

• the (spherically averaged) charge density is recalculated;

• a new KS potential is calculated from the charge density, and the procedure is iterated until
self-consistency is reached.

The minimum energy is obtained for the ground state electronic configuration, that is well known
for all atoms.

The solution of the radial KS equation (step 1 above) is typically done by numerical inte-
gration on a grid, using any of the many well-known techniques that have been developed for
one-dimensional differential equations.

The iteration to self-consistency (step 3) is done using the methods explained in Sec. “Iteration
to self-consistency”.

One may wonder why we fix the electronic configuration instead of filling the one-electron state
starting from the lowest energies and up. For many atoms there is no difference between the two
approaches. Atoms with incomplete d and f states however present a problem. The incomplete d
and f shells may have KS energies that are lower than those of outer s and p states; if however we
try to move one more electron from s and p states into the d or f shell, the KS level is ”pushed
up” by strong Coulomb repulsion between highly localized electrons. This is a manifestation of
strong correlation that is responsible for a wealth of interesting phenomena (such as magnetism).
Currently available functionals are unable to reproduce this behavior and may produce an incorrect
occupancy of state if this is assigned in ”the one-electron way”. Fixing the electronic configuration
solves the problem (unfortunately only in atoms) by imposing the correct occupancy of the highly
localized (correlated) d and f states.

2.2 Molecules

In molecules, KS equations are usually solved by expanding KS orbitals into some suitable basis
set. Methods of solutions based on the discretization of the problem on a 3-d grid have also been
proposed, though. Localized basis sets (atomic-like wavefunctions centered on atoms) are often
used, especially in Quantum Chemistry. The most common basis sets are Linear Combinations
of Atomic Orbitals (LCAO), Gaussian-type Orbitals (GTO), Slater-type Orbitals (STO). These
atomic-like functions are tailored for fast convergence, so that only a few (some tens at most)
functions per atom are needed. An impressive body of technique has been developed during the
years on the use of localized basis sets.

Localized orbitals are quite delicate to use. One problem is the difficult to check systematically
for convergence. Another problem is the difficulty of calculating the Hellmann-Feynman forces
acting on atoms, due to the presence of Pulay forces (see later). In the following we will concentrate
on the opposite approach, that is, choosing extended, atomic-independent Plane Waves (PW) as
basis set.

2.3 Extended systems: unit cells and supercells

The atomic arrangement in perfect crystals is described by a periodically repeated unit cell. For
many interesting physical systems, however, perfect periodicity is absent, but the system is either
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approximately periodic or periodic in one or two directions or periodic except for a small part.
Examples of such systems include surfaces, point defects in crystals, substitutional alloys, het-
erostructures (“superlattices” and quantum wells). In all such cases it is convenient to simulate
the system with a periodically repeated fictitious supercell. The form and the size of the supercell
depend on the physical system being studied. The study of point defects requires that a defect
does not interact with its periodic replica in order to accurately simulate a truly isolated defect.
For disordered solids, the supercell must be large enough to guarantee a significant sampling of the
configuration space. For surfaces, one uses a crystal slab alternated with a slab of empty space,
both large enough to ensure that the bulk behavior is recovered inside the crystal slab and that
the surface behavior is unaffected by the presence of the periodic replica of the crystal slab. In the
examples mentioned above, the supercell approach is usually more convenient than the “cluster
approach”, that is, simulating an extended system by taking a finite piece of material (the more
traditional approach in Quantum Chemistry). The reason is the absence of an abrupt termination
in the supercell approach.

Even finite systems (molecules, clusters) can be studied using supercells. Enough empty space
between the periodic replicas of the finite system must be left so that the interactions between them
are weak. The use of supercells for the simulation of molecular or completely aperiodic systems
(liquids, amorphous systems) has become quite common in recent years, in connection with first-
principles simulations (especially molecular dynamics simulations) using a PW basis set. In fact
there are important computational advantages in the use of PW’s that may offset the disadvantage
of inventing a periodicity where there is none.

The size of the unit cell – the number of atoms and the volume – is very important. To-
gether with the type of atoms it determines the difficulty of the calculation: large unit cells mean
large calculations. Unfortunately many interesting physical systems are described – exactly or
approximately – by large unit cells.

2.4 Plane wave basis set

In the following we will assume that our system is a crystal with lattice vectors R and reciprocal
lattice vectors G. It is not relevant whether the cell is a real unit cell of a real periodic crystal or
if it is a supercell describing an aperiodic system. The KS wavefunctions are classified by a band
index and a Bloch vector k in the Brillouin Zone (BZ).

A PW basis set is defined as

〈r|k + G〉 =
1
V
ei(k+G)·r,

h̄2

2m
|k + G|2 ≤ Ecut, (57)

where V is the crystal volume, Ecut is a cutoff on the kinetic energy of PW’s (from now on, simply
“the cutoff”). PW’s have many attractive features: they are simple to use (matrix elements of the
Hamiltonian have a very simple form), orthonormal by construction, unbiased (there is no freedom
in choosing PW’s: the basis is fixed by the crystal structure and by the cutoff) and it is very simple
to check for convergence (by increasing the cutoff).

Unfortunately the extended character of PW’s makes it very difficult to accurately reproduce
localized functions such as the charge density around a nucleus or even worse, the orthogonalization
wiggles of inner (core) states. In order to describe features which vary on a length scale δ, one needs
Fourier components up to q ∼ 2π/δ. In a solid, this means ∼ 4π(2π/δ)3/3Ω PW’s (where Ω is the
dimension of the BZ). A simple estimate for diamond is instructive. The 1s wavefunction of the
carbon atom has its maximum around 0.3 a.u., so δ ' 0.1 a.u. is a reasonable value. Diamond has
an fcc lattice (Ω = (2π)3/(a3

0/4)) with lattice parameter a0 = 6.74 a.u., thus yielding ∼ 250, 000
PW’s. This is clearly too much for practical use.

2.5 Pseudopotentials

Core states prevent the use of PW’s. However they do not contribute in a significant manner
to chemical bonding and to solid-state properties. Only outer (valence) electrons do, while core
electron are “frozen” in their atomic state. This suggests that one can safely ignore changes in core
states (frozen core approximation). However the soundness of this approach was challenged by a
1976 paper by Janak, showing that large variations in the energy of core states can be induced by
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changes in the chemical environment. The controversy was solved in 1980 by Von Barth and Gelatt.
Their argument is briefly sketched here. Let us introduce the notations nc and nv for the true
selfconsistent core and valence charge; n0

c and n∗v for the frozen-core charge and the corresponding
valence charge. A “frozen-core functional” E[nc, nv] is introduced. The frozen-core error is

δ = E[n0
c , n

∗
v]− E[nc, nv]. (58)

By expanding around nc and nv one finds

δ '
∫

δE

δnc
(n0

c − nc)dr +
∫

δE

δnv
(n∗v − nc)dr + 2nd order terms. (59)

The important point is that the following stationary conditions hold:

δE

δnc
= µc,

δE

δnv
= µv (60)

where µc and µv are constants, so that the first-order terms in the error vanish.
The idea of replacing the full atom with a much simpler pseudoatom with valence electrons

only arises naturally (apparently in a 1934 paper by Fermi for the first time). Pseudopotentials
(PP’s) have been widely used in solid state physics starting from the 1960’s. In earlier approaches
PP’s were devised to reproduce some known experimental solid-state or atomic properties such
as energy gaps or ionization potentials. Other types of PP’s were obtained from band structure
calculations with the OPW (orthogonalized PW) basis set, by separating the smooth (PW) part
from the orthogonalization part in the wavefunctions.

Modern PP’s are called norm-conserving. These are atomic potentials which are devised so as
to mimic the scattering properties of the true atom. For a given reference atomic configuration, a
norm-conserving PP must fulfill the following condition:
1) all-electron and pseudo-wavefunctions must have the same energy, and
2) they must be the same beyond a given “core radius” rc, which is usually located around the
outermost maximum of the atomic wavefunction;
3) the pseudo-charge and the true charge contained in the region r < rc must be the same.

This last condition explains the name norm-conserving. There is an historical reason for this:
some earlier PP’s violated condition 3 (this was known as the “orthogonality hole” problem). Note
that the definition “all-electron”, here and in the following, refers to a KS calculation that includes
core electrons, not to a many-electron wavefunctions.

Norm-conserving PP are relatively smooth functions, whose long-range tail goes like −Zve
2/r

where Zv is the number of valence electrons. They are nonlocal because it is usually impossible to
mimic the effect of orthogonalization to core states on different angular momenta l with a single
function. There is a PP for every l:

V̂ ps = Vloc(r) +
∑

l

Vl(r)P̂l = Vloc(r) +
∑
lm

Ylm(r)Vl(r)δ(r − r′)Y ∗
lm(r′), (61)

where Vloc(r) ' −Zve
2/r for large r and P̂l = |l〉〈l| is the projection operator on states of angular

momentum l. They are however seldom used in this form. For computational reasons, they are
recast into a separable form (see appendix). The nonlocality of PP’s introduces some additional but
limited complications in the calculation. In particular, one has to do the following generalization:∫

V (r)n(r)dr −→
∑

i

〈ψi|V̂ |ψi〉 =
∑

i

∫
ψ∗i (r)V (r, r′)ψi(r′)drdr′. (62)

Experience has shown that PP’s are practically equivalent to the frozen core approximation:
PP and all-electron calculations on the same systems yield almost indistinguishable results (except
for those cases in which core states are not sufficiently frozen). It should be remarked that the use
of PP’s is not limited to PW basis sets: PP’s can be used in conjunction with localized basis sets
as well.
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2.6 Another way of looking at pseudopotentials

Norm-conserving PP’s are still “hard” – that is, they contain a significant amount of Fourier
components with large q – for a number of atoms, such as N, O, F, and the first row of transition
metals. For these atoms little is gained in the pseudization, because there are no orthonormality
wiggles that can be removed in the 2p and 3d states, respectively. More complex Ultrasoft PP’s
have been devised that are much softer than ordinary norm-conserving PP’s, at the price of a
considerable additional complexity.

The heavy formalism of ultrasoft PP’s tends to hide the underlying logic (and physics). An
alternative approach, called Projector Augmented Waves (PAW), is much more transparent. More-
over PAW includes as special cases a number of other methods and provides a simple and consistent
way to reconstruct all-electron wavefunctions from pseudo-wavefunctions. These are needed for
reliable calculation of a number of observables, such as NMR chemical shifts and hyperfine coupling
coefficients.

The idea of PAW is to find a mapping between the complete wavefunction and the pseudo-
wavefunction via a suitable linear operator. The pseudo-wavefunction must be a smooth object
that can be expanded into PW’s.

Let us consider for simplicity the case of a single atom in the system. In a region R centered
around the atom, the mapping is defined as

|φ̃l〉 = (1 + T )|φl〉 (63)

where the functions φ̃l are solutions, regular at the origin but not necessarily bound, of the all-
electron atomic KS equation; the functions φl are corresponding pseudo-functions, that are much
smoother in the region R and join smoothly to the φ̃l at the border of region R. Outside the region
R, we set T = 0.

In the region R, we assume that we may write a pseudo-wavefunction ψ for our molecular or
solid-state system as a sum over the atomic pseudo-waves φl:

|ψ〉 =
∑

l

cl|φl〉 (64)

By applying the operator (1 + T ) to both sides of the above expansion we find

|ψ̃〉 =
∑

l

cl|φ̃l〉 (65)

where ψ̃ is the all-electron wavefunction. The above result can be recast into the form

|ψ̃〉 = |ψ〉+
∑

cl

(
|φ̃l〉 − |φl〉

)
. (66)

It remains to define the cl coefficients. Let us introduce the projectors βl with the following
properties:

〈βl|φm〉 = δlm,
∑

l

|φl〉〈βl| = I. (67)

It is easy to verify that cl = 〈βl|ψ〉 and that we can write

|ψ̃〉 = |ψ〉+
∑

l

〈βl|ψ〉
(
|φ̃l〉 − |φl〉

)
(68)

=

[
I +

∑
l

(
|φ̃l〉 − |φl〉

)
〈βl|

]
|ψ〉. (69)

The quantity between square brackets is our 1 + T operator. This replaces the pseudo-states φ
from the pseudo-wavefunctions around the atoms and replaces them with the all-electron states φ̃.
The 1 + T operator is a purely atomic quantity that is obtained from a judicious choice of the φ̃l

all-electron atomic states, the corresponding pseudo-states φl, and the projectors βl.
The equations to solve in the PAW method are then obtained by inserting the above form for ψ̃

in the energy functional and by finding its minimum with respect to the variation of the smooth part
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only, ψ. Rather cumbersome expressions results. An important feature of the resulting equations
is that the charge density is no longer given simply by the square of the orbitals, but it contains
in general an additional (augmentation) term:

n(r) =
∑

i

|ψi(r)|2 +
∑

i

∑
lm

〈ψi|βl〉qlm(r)〈βm|ψi〉 (70)

where
qlm(r) = φ̃l(r)φ̃m(r)− φl(r)φm(r) (71)

(using the completeness relation, Eq.(67)). Conversely the pseudo-wavefunctions are no longer
orthonormal, but obey instead a generalized orthonormality relation:

〈ψi|S|ψj〉 = δij , S = I +
∑
lm

|βl〉Qlm〈βm| Qlm =
∫

R

qlm(r)dr. (72)

Ultrasoft PP’s can be derived from PAW assuming a pseudized form for qlm(r). Norm-conserving
PP’s in the separable form can be derived from PAW if the atomic states φ̃l and φl obey the
norm-conservation rule (thus S = 1). The LAPW method can also be recast under this form. The
careful reader will also remark some similarity between the PAW approach and the venerable PP’s
based on the OPW method (those with the infamous “orthogonality hole”: PAW plugs the hole
by defining the charge density in the correct way).

2.7 Brillouin-Zone sampling

In order to calculate the charge density n(r) in a periodic system one has to sum over an infinite
number of k-points:

n(r) =
∑
k

∑
i

|ψk,i(r)|2 (73)

where the index i runs over occupied bands. Assuming periodic (Born-Von Kàrmàn) boundary
conditions

ψ(r + L1R1) = ψ(r + L2R2) = ψ(r + L3R3) = ψ(r), (74)

a crystal has L = L1L2L3 allowed k-points (L is also the number of unit cells). In the “thermody-
namic” limit of an infinite crystal, L → ∞, the discrete sum over k becomes an integral over the
BZ.

Experience shows that this integral can be approximated by a discrete sum over an affordable
number of k-points, at least in insulators and semiconductors. When present, symmetry can be
used to further reduce the number of calculations to be performed. Only one k-point is left to
represent each star – the set of k-points that are equivalent by symmetry – with a weight wi that
is proportional to the number of k-points in the star. The infinite sum over the BZ is replaced by
a discrete sum over a set of points {ki} and weights wi:

1
L

∑
k

fk(r) −→
∑

i

wifki
(r). (75)

The resulting sum is then symmetrized to get the charge density.
Suitable sets for BZ sampling in insulators and semiconductors are called “special points”. This

name is somewhat misleading: in most cases those sets just form uniform grids in the BZ.
In metals things are more difficult because one needs an accurate sampling of the Fermi sur-

face. A suitable extension of DFT to fractionary occupation numbers is needed. The Gaussian
broadening and the tetrahedron techniques, or variations of the above, are generally used.

In supercells, the k-point grid is often limited to the Γ point (k = 0). A better sampling may
be needed only if it is important to accurately describe the band structure of a subjacent crystal
structure. This is the case of point defects in solids and of surfaces. If, on the contrary, supercells
are used to simulate completely aperiodic or finite systems, the Γ point is the good choice: a better
k-point grid would better account for the periodicity of the system, but this is fictitious anyway.
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3 Finding the electronic ground state

There are two possible ways to find the electronic ground state, for fixed atomic positions. The
first is to solve self-consistently the KS equations, by diagonalizing the Hamiltonian matrix and
iterating on the charge density (or the potential) until self-consistency is achieved. The second is
to directly minimize the energy functional as a function of the coefficients of KS orbitals in the PW
(or other) basis set, under the constraint of orthonormality for KS orbitals. The basic ingredients
are in both cases the same.

3.1 Iteration to self-consistency

In the following I will consider the charge density as the quantity to be determined self-consistently,
but similar considerations apply to the self-consistent potential VKS as well.

We supply an input charge density nin(r) to the KS equations and we get an output charge
density nout(r). This defines a functional A:

nout(r) = A[nin(r)]. (76)

At self-consistency,
n(r) = A[n(r)]. (77)

The first algorithm that comes to the mind is to simply use nout(r) as the new input charge density:

n
(i+1)
in = n

(i)
out, (78)

where the superscripts indicate the iteration number. Unfortunately there is no guarantee that
this will work, and experience shows that it usually does not. The reason is that the algorithm will
work only if the error on output is smaller than the error on input. If you have an error δnin(r)
on input, the error on output, close to self-consistency, will be

δnout(r) '
∫

δA

δn(r)
δnin(r)dr ≡ Jδnin (79)

which may or may not be smaller than the input error: it depends on the size of the largest
eigenvalue, eJ , of the operator J , which is related to the dielectric response of the system. Usually,
eJ > 1 and the iteration does not converge.

A simple algorithm that generally works, although sometimes slowly, is the “simple mixing”.
A new input charge density is generated by mixing the input and output charges:

n
(i+1)
in = (1− α)n(i)

in + αn
(i)
out (80)

The value of α must be chosen empirically in order to get fast convergence. The error with respect
to self-consistency becomes

δnout = [(1− α) + αJ ] δnin (81)

and it is easily seen that the iteration converges if α < |1/eJ |. In general, the convergence is
easier for small cells and symmetric systems, more difficult for larger cells, low symmetry, cells
elongated along one directions, surfaces. Relatively big values (α = 0.3 − 0.5) can be chosen in
“easy” systems, smaller values are appropriate for cases of difficult convergence.

Better results are obtained with more sophisticated algorithms (to name a few: Anderson,
Broyden, Direct Iteration in Inverse Space, DIIS) that use informations collected from several
preceding iterations. Let us sketch the logic of such algorithms. We have a sequence of n(i)

in

producing n(i)
out from preceding iterations. We look for the linear combination of input nnew

in :

nnew
in =

∑
l

cln
(l)
in ,

∑
l

cl = 1 (82)

that minimizes an appropriate norm ||nnew
in − nnew

out ||. Close to self-consistency,

||nnew
in − nnew

out || ' ||
∑

l

cl(n
(l)
in − n

(l)
out)|| (83)

and the coefficients cl are determined by imposing that such norm is minimum. Then we mix nnew
in

with nnew
out =

∑
l cln

(l)
out (using simple mixing or whatever algorithm is appropriate).
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3.2 Diagonalization of the Hamiltonian

When the wavefunctions are expanded on a finite basis set the KS equations take the form of a
secular equation: ∑

G′

H(k + G,k + G′)ψk,i(G′) = εk,iψk,i(G), (84)

where the matrix elements of the Hamiltonian have the form

H(k+G,k+G′) =
h̄2

2m
(k+G)2δG,G′ +Vscf (G−G′)+Vloc(G−G′)+VNL(k+G,k+G′). (85)

The term Vscf (G−G′) is the Fourier transform of the the screening potential:

Vscf (G−G′) =
1
V

∫
Vscf (r)ei(G−G′)rdr. (86)

(V is the volume of the crystal: the integration extends over the entire crystal) and the same
applies to Vloc that comes from the local term in the PP’s. The nonlocal contribution VNL comes
from the nonlocal part of the PP’s:

VNL(k + G,k + G′) =
1
V

∫
VNL(r, r′)e−i(k+G)r′

ei(k+G′)r′
drdr′. (87)

The problem is reduced in this way to the well-known problem of finding the lowest eigenvalues
and eigenvectors (only the valence states for insulators, a few more for metals) of an Npw ×Npw

Hermitian matrix (whereNpw is the number of PW’s). This task can be performed with well-known
bisection-tridiagonalization algorithms, for which very good public-domain computer packages (for
instance, LAPACK) exist. Unfortunately this straightforward procedure has serious limitations.
In fact:

i) the computer time required to diagonalize a Npw ×Npw matrix grows as N3
pw;

ii) the matrix must be stored in memory, requiring O(N2
pw) memory.

As a consequence a calculation requiring more than a few hundred PW’s becomes exceedingly
time- and memory-consuming. As the number of PW’s increases with the size of the unit cell it is
very hard to study systems containing more than a few (say 5-10) atoms. Both limitations can be
pushed much further using iterative techniques (see Appendix).

3.3 Direct minimization

It is not necessary to go through KS equations and self-consistency to find the electronic ground
state. The energy functional can be written as a function of the coefficients in the basis set of the
KS orbitals and directly minimized, under the usual orthonormality constraints. One has to find
the minimum of

E′(ψk,i(G)) = E(ψk,i(G))−
∑
ij

λij

(∑
G

ψ∗k,i(G)ψk,j(G)− δij

)
, (88)

with respect to the variables ψk,i(G) and the Lagrange multipliers λij . The problem is made much
simpler by the knowledge of the gradients of the function to be minimized. In fact, remembering
Eq.22, one easily finds

∂E′

∂ψk,i(G)
= H(G,G′)ψ∗k,i(G

′)−
∑
ij

λijψ
∗
k,j(G). (89)

Note that, as in iterative diagonalization, the basic ingredients are Hψ products. Note also that
the Hamiltonian depends on the variables ψk,i(G) through Vscf and the charge density.

The problem of minimizing a function of many variables whose gradients are known, with
the additional complication due to the presence of constraints, can be solved using appropriate
extensions to textbook algorithms, or specialized algorithms, such as steepest descent (bad) or
conjugate gradient (better) or DIIS (even better).
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4 Moving atoms - complex materials

Until now we have assumed that the atomic positions were known and fixed. This is the case
for simple crystals (silicon for instance), but in more complex crystals (for instance, SiO2) the
equilibrium positions are not fixed by symmetry. In even more complex materials we simply don’t
know the equilibrium atomic positions and would like to calculate them.

In the following we assume that ions are classical objects. At zero temperature the equilibrium
atomic positions Ri, i = 1, ..., N (N = number of atoms in the unit cell) are determined by the
minimum of the total energy Etot of the system, that is, the sum of the electronic (DFT) energy
E and of the ion-ion interaction (electrostatic) energy EII . If we consider the electrons in their
ground state for any given configuration of Ri (collectively indicated by {R}), the total energy
will be a function of the atomic positions:

Etot({R}) = E({R}) + EII({R}). (90)

The procedure to find the atomic configuration yielding the minimum energy is usually called
structural optimization or relaxation.

For an infinite system we must distinguish between atomic displacements that change the form
and volume of the unit cell (related to elastic modes) and atomic displacements internal to the
unit cell (related to phonon modes). Such distinction does not exist for a finite system. The
optimization of the lattice and that of atomic positions have to be done separately, or in any case,
using different procedures (Unless we use variable-cell molecular dynamics, a very powerful but
very complex technique).

4.1 Optimization of lattice parameters

The determination of the equilibrium lattice parameters and of the relative stability of different
structures for simple semiconductors was one of the first remarkable applications of the LDA PW-
PP approach (around 1980). The total energy is calculated as a function of the volume V of
the unit cell for various different candidate structures. The lowest-energy structure will be the
equilibrium structure at zero temperature and at zero pressure.

The E(V ) curve can in principle be directly calculated. However it is much more convenient
to fit an equation of state to a few calculated points. Empirical equations of state depending on a
few parameters and covering a wide range of volumes around the equilibrium are well known and
widely used in geology and geophysics. The most famous is possibly the Murnaghan equation of
state:

P (V ) =
B

B′

[(
V0

V

)B′

− 1

]
(91)

where the fit parameters are the equilibrium volume V0, the bulk modulus B:

B = −V ∂P
∂V

= V
∂2E

∂V 2
(92)

and its derivative with respect to the pressure, B′ = dB/dP , an adimensional quantity ranging from
3 to 10 for almost all solids. The Murnaghan E(V ) is obtained by integrating the former expression.
All these quantities are directly comparable to experimental results (at zero temperature).

The reason for this fit procedure is that the straightforward calculation of E(V ) suffers from
important errors. In particular, when using PW’s with a given energy cutoff, the number of PW’s
depends on V . As most calculations are done far from convergence, this will cause large oscillations
in the calculated E(V ) (this is reminiscent of the “Pulay force” problem). Experience show that
the fit to an equation of state effectively smoothes the oscillations and yields very good results
even if the cutoff of PW’s is low.

The statement “most calculations are done far from convergence” is not as alarming as it may
seem: in fact the slow convergence is due to the region of charge close to the atomic cores. This
is an essentially atomic-like charge that changes little from one structure to another. If we are
interested in comparing different structures of the same materials, the relative energy differences
will converge with the cutoff well before the absolute energy values. Of course, one has to check
carefully the relative convergence with respect to the BZ sampling as well.

19



It is also possible to find the pressure at which the crystal makes a transition from one structure
to the other. This is achieved by connecting with a common tangent two E(V ) curves for two
different structures. It is easy to show that this construction determines the pressure at which the
enthalpies of the two phases are equal: E1 +PV1 = E2 +PV2. The minimum enthalpy state is the
thermodynamic condition of stability at zero temperature and at constant pressure. The crossing
of the enthalpies of the two phases at equal P signals the possibility of a first-order structural
transition.

Of course this approach relies on some knowledge or intuition of reasonable candidates crystal
structures. Generally the results are in good to very good agreement with experiments.

In more complex crystals: noncubic or with atomic positions in the unit cell that are not fixed
by symmetry, the equilibrium is determined not only by the volume of the unit cell but also by
other lattice parameters (for instance, c/a for tetragonal crystals) and by atomic positions in the
unit cell. The approach sketched above is still valid, provided one determines the equilibrium
atomic positions (see next section) and the equilibrium lattice parameters for a given volume. For
the latter the calculation of stresses may be useful:

σαβ =
1
V

∂E

εαβ
(93)

where εαβ is the strain: a homogeneous deformation of all coordinates, sending r into r′ = (1+ ε)r
(where ε is a matrix). The stresses can be calculated in DFT. At equilibrium and at zero pressure,
the stresses are zero. The pressure is related to the stress by P = −Trσ/3.

4.2 Optimization of atomic positions

The problem of finding minimum of the total energy as a function of atomic positions, having
fixed the unit cell, is much easier if one can calculate the gradients of the energy with respect to
the variables (the atomic positions in the unit cell). This can be done quite easily, at least for a
PW basis set, as shown in the next section. We are left with the textbook problem of finding the
minimum of a 3N−dimensional problem. Several well-known and well-studied algorithms exist:
conjugate gradient, quasi-Newton methods, DIIS. In the appendix the conjugate gradient algorithm
is examined

The two following points however must be remarked. The first is that, if we start from a system
having a given symmetry, the forces will not break such symmetry. This may be both an advantage
and a disadvantage. The second is that algorithms based on forces will very likely bring the system
to the closer local minimum (a zero gradient point), rather than to the absolute minimum (the
lowest-energy minimum). In situations in which there are many local minima separated by energy
barriers this kind of approach can easily fail to find the global minimum. Unfortunately this is a
typical situation: for instance, clusters of atoms are known to have a large number of local minima.

4.3 Hellmann-Feynman forces

Hellmann-Feynman forces are the derivative of the total energy with respect to atomic positions Ri.
For many-body Hamiltonians and wavefunctions, only terms containing explicit derivatives in the
Hamiltonian contribute (Hellmann-Feynman theorem). The terms containing implicit derivatives
through the wavefunctions, that we indicate with F̃i, vanish:

Fi = − d

dRi
〈Ψ|H|Ψ〉 = −〈Ψ| ∂H

∂Ri
|Ψ〉 − F̃i (94)

with
F̃i = 〈 dΨ

dRi
|H|Ψ〉+ 〈Ψ|H| dΨ

dRi
〉 = E〈 dΨ

dRi
|Ψ〉+ E〈Ψ| dΨ

dRi
〉 = E

d

dRi
〈Ψ|Ψ〉. (95)

The last term vanish because it is the derivative of a constant quantity. Note that partial derivative
are used to indicate explicit derivation, otherwise the total derivative is used.

In DFT the same applies, thanks to the variational character of the energy. Let us write the
force as

Fi = − dE

dRi
= −

∫
n(r)

∂V (r)
∂Ri

dr− ∂EII

∂Ri
− F̃i (96)

20



where the first term comes from explicit derivation of the energy functional, EII is the ion-ion
(classical) interaction energy, and the F̃i contains the implicit derivation through KS orbitals:

F̃i =
∑

k

∫ (
dψ∗k(r)
dRi

δE

δψ∗k(r)
+
dψk(r)
dRi

δE

δψk(r)

)
dr. (97)

Using the expression for the functional derivative of the energy functional, Eq.22, and the identity

0 =
d

dRi

∫
n(r)dr =

∑
k

(∫
dψ∗k(r)
dRi

ψk(r)dr +
∫
ψ∗k(r)

dψk(r)
dRi

dr
)
, (98)

the term F̃i can be recast as

F̃i =
∑

k

∫ (
dψ∗k(r)
dRi

(H − εk)ψk(r) +
dψk(r)
dRi

(H − εk)ψ∗k(r)
)
dr. (99)

This term vanishes on the ground state. Finally, one finds that, in perfect analogy to the many-
body case, the forces acting on atoms are the matrix element on the ground state of the gradient
of the external potential plus an ion-ion term:

Fi = −
∫
n(r)

∂V (r)
∂Ri

dr− ∂EII

∂Ri
. (100)

4.4 Pulay forces

Unfortunately the term F̃i in Eq.99 vanishes only if we have ground state charge density and
wavefunctions at perfect convergence. In the real world, this is never the case. In particular,
the wavefunctions are expanded on a finite basis set that is never complete. This may produce a
nonzero value of F̃i, called Pulay force.

Let us write the expansion of wavefunctions into a basis set, taken to be orthonormal for
simplicity:

ψk(r) =
∑

n

c(k)
n φn(r). (101)

This will yield a secular equation∑
m

(Hnm − εi)c(k)
m = 0, Hnm =

∫
φ∗n(r)Hφm(r)dr. (102)

By inserting the expansion of the KS orbitals into Eq.99 one finds

F̃i =
∑

k

∑
mn

∂c
(k)
n

∂Ri
(Hnm − εk)c(k)

m +
∑
mn

c(k)
n c(k)

m

∫
∂φ∗n(r)
∂Ri

(H − εk)φm(r)dr + c.c. (103)

The first term vanish exactly even if the basis set is not complete (see Eq.102). The second term
instead vanishes only if i) if the basis set is complete, or ii) if ∂φ∗n(r)/∂Ri has no component
outside the subspace defined by the φn(r), or iii) if the basis set does not depend explicitly on the
atomic positions. The latter is the case of PW’s. Pulay forces do not arise because the basis set is
incomplete, but because it is “incomplete in a different way” when atoms are moved. Using PW
one has also an incomplete basis set, but it is “equally incomplete” for all atomic positions in the
unit cell.

In practical calculations with localized basis sets, Pulay forces must be taken into account,
otherwise the error on the forces is quite large. If one wants to minimize the energy, or to do
molecular dynamics simulations, it is crucial that the forces are the derivative of the energy within
numerical accuracy. Although much progress has been done in the last years towards reliable
calculation of forces with localized basis sets, PW’s are still much more used than localized basis
sets for all applications in which forces are important.

It should be kept in mind that the above results holds at perfect electronic self-consistency (or
at the perfect minimum of the energy functional, in the case of direct minimization). Practical
calculations of forces will always contain a small error. We will come back to this point later.
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5 DFT and Molecular Dynamics

We can safely assume that ions behave as classical particles (a very good approximation, ex-
cept in some cases for Hydrogen). Also, we can assume that the electrons are always on the
Born-Oppenheimer (BO) surface, that is, in the ground state corresponding to their instantaneous
positions. Under these assumptions the dynamical behavior of ions can be described by a classical
Lagrangian

L =
1
2

∑
i

MiṘ2
i − Etot({R}) (104)

where Mi are the mass of ions. The corresponding equations of motion:

d

dt

∂L

∂Ṙi

− ∂L

∂Ri
= 0, Pi =

∂L

∂Ṙi

(105)

are nothing but Newton’s equations.
It is tempting to use Eq.104 as the basis for a molecular dynamics (MD) study. In classical

MD, the forces are generated by an interatomic potential (often a sum of two-body terms like
Lennard-Jones potentials) and the Newton equations are discretized and numerically solved. The
discrete interval of time is called time step. A sequence of atomic coordinates and velocities is
generated starting from a suitable initial set of coordinates and velocities. The sequence can be
used to calculate thermodynamical averages. Straightforward MD will sample the microcanonical
ensemble: constant energy at fixed volume, but it is possible to build a dynamics at constant
temperature (canonical ensemble) using a Nosé thermostat that simulates a thermal bath, or at
constant pressure, by adding a fictitious dynamics on the volume, and even more complex cases.

MD can also be used to find the global minima using the simulated annealing technique. The
configuration space is sampled at equilibrium, then the kinetic energy is gradually removed from
the systems that has the possibility (but is not guaranteed to do so) to reach the global minimum.
Such procedure is sometimes the only practical way to find the global minimum for especially hard
problems. In mathematical terms, “easy” problems are exactly solvable by computer algorithms
in polynomial time, that is, in a number of steps that is a polynomial function of the dimension of
the problem; “hard” problems are solved in exponential time. A problem is NP (nondeterministic
polynomial) if its solution (if one exists) can be guessed and verified in polynomial time. This is
the kind of problems for which the simulated annealing has been devised. The determination of
the structure in clusters is believed to be a NP-hard problem.

5.1 Classical Molecular Dynamics

Let us consider the most basic MD : a purely mechanical system of N atoms, enclosed in a volume
V (usually with periodical boundary conditions, PBC, for a condensed-matter system), having
mechanical energy E = T +Ep, where T = 1

2

∑
iMiṘ2

i is the kinetic energy of ions, Ep = Ep({R})
is the interatomic potential energy. This is known as the NV E, or microcanonical, ensemble.

5.1.1 Discretization of the equation of motion

The numerical solution (integration) of the equations of motions is generally performed using the
Verlet algorithm. This is obtained from the following basic and very simple equations :

Ri(t+ δt) = Ri(t) + δtVi(t) +
δt2

2Mi
fi(t) +

δt3

6
bi(t) +O(δt4) (106)

Ri(t− δt) = Ri(t)− δtVi(t) +
δt2

2Mi
fi(t)−

δt3

6
bi(t) +O(δt4) (107)

where Vi = Ṙi are velocities, fi forces acting on ion i. By summing and subtracting Eqs. (106)
and (107) we get the Verlet algorithm:

Ri(t+ δt) = 2Ri(t)−Ri(t− δt) +
δt2

Mi
fi(t) +O(δt4) (108)

Vi(t) =
1

2δt
[Ri(t+ δt)−Ri(t− δt)] +O(δt3). (109)
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The velocities are one step behind the positions, but they are not used to update the positions.
It is possible to recast the Verlet algorithm into an equivalent form (one giving exactly the same
trajectories) in which both velocities and positions are updated in the same step. By combining
Eq.(106) with Eq.(107) displaced in time by +δt, one finds

Vi(t+ δt) = Vi(t) +
δt

2Mi
[fi(t) + fi(t+ δt)] (110)

Ri(t+ δt) = Ri(t) + δtVi(t) +
δt2

2Mi
fi(t). (111)

Note that the update of velocities requires the forces for the new positions. This algorithm is
known as Velocity Verlet. Its equivalence to the Verlet algorithm may not seem evident, but it can
be proved quite simply.

In spite of his simplicity, the Verlet algorithm, in any incarnation, is efficient and numerically
stable. In particular, it yields trajectories that conserve to a very good degree of accuracy the energy
E. A small loss of energy conservation, due both to numerical errors and to the discretization,
is unavoidable, but a systematic drift of the energy is not acceptable. In this respect Verlet is
superior to apparently better (i.e. higher-order) schemes. In one of the following sections we will
see one reason why this happen.

5.1.2 Thermodynamical averages

In the following we will use the phase space canonical variables, collectively indicated as R,P,
instead of coordinates and velocities. From a practical point of view, the calculation of thermody-
namical averages in classical MD is an average over many time steps:

AT =
1
T

∫ T

0

A(R(t),P(t))dt ' 1
M

M∑
n=1

A(tn), tn = nδt, tM = Mδt = T. (112)

For an ergodic system (that is, one whose trajectories in a sufficiently long time pass arbitrary
close to any point in the phase space), it is believed that:

lim
T→∞

AT → 〈A〉 (113)

where 〈〉 is the average over the corresponding ensemble:

〈A〉 =
∫
ρ(R,P)A(R,P)dRdP (114)

where ρ is the probability of a microscopic state. In NV E MD the microcanonical ensemble is
sampled:

ρNV E(R,P) =
g(N)

Ω
δ(H − E) (115)

where H is the Hamiltonian corresponding to the Lagrangian of Eq.(104), E is the mechanical
energy (including kinetic energy of ions) g(N) = (h3NN !)−1 for N indistinguishable atoms, and Ω,
related to the entropy S by the Boltzmann relation S = kB log Ω, is the total number of microscopic
states:

Ω = g(N)
∫
dRdPδ(H − E). (116)

The time step must be as big as possible in order to sample as much phase space as possible, but
at the same time it must be small enough to allow to follow the motion the ions with little loss of
accuracy (which usually appears as a drift in the energy). Typically δt ∼ 0.01 − 0.1δtmax, where
δtmax is the period of the fastest phonon mode: δtmax = 1/ωmax.

5.1.3 Verlet algorithm as unitary discretization of the Liouvillian

Let us consider an observable A = A(R,P, t). Its time evolution can be written as

dA

dt
=
∑

i

(
Ṙi

∂A

∂Ri
+ Ṗi

∂A

∂Pi
+
∂A

∂t

)
= iLA+

∂A

∂t
(117)
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where the operator L is called the Liouvillian. Assuming that A = A(R,P) does not depend
explicitly on the time, the Liouvillian determines entirely the time evolution of A: formally,

A(t) = eiLtA(t = 0) = U(t)A(t = 0). (118)

It can be shown that L is an Hermitian operator and thus U is a unitary operator (as it should
be: time-reversal symmetry must hold). We can write L as

iL =
∑

i

(
Ṙi

∂

∂Ri
+ Ṗi

∂

∂Pi

)
=
∑

i

(
Ṙi

∂

∂Ri
+ fi

∂

∂Pi

)
(119)

and finally as a sum of two terms, one acting on coordinates and one on momenta: iL = iLp + iLr,
where

iLp =
∑

i

fi
∂

∂Pi
, iLr =

∑
i

Ṙi
∂

∂Ri
. (120)

Until now, we have just recast the classical equation of motion into an elegant but not especially
useful formalism. Let us discretize now the time evolution operator, by dividing t into N small
intervals δt = t/N , and apply the Trotter approximation:

ei(Lp+Lr)t =
[
ei(Lp+Lr)δt

]N
=
[
eiLpδt/2eiLrδteiLpδt/2 +O(δt3)

]N
. (121)

Remember that Lp and Lr are operators: the Trotter approximation is not trivial. Let us apply
the operator between square brackets to a point (Ri(t),Pi(t)) in phase space at time t. We will
use the known result

ea∂/∂xf(x) = f(x+ a) (122)

if a does not depend on x. Since Lp and Lr are sums of terms acting on each particle separately,
we can consider their action on each particle independently.

eiLpδt/2 (Ri,Pi) =
(
Ri,Pi +

δt

2
fi(R)

)
≡ (R′

i,P
′
i) (123)

eiLrδt (R′
i,P

′
i) =

(
R′

i +
δt

Mi
P′

i,P
′
i

)
(124)

=
(
Ri +

δt

Mi
Pi +

δt2

2m
fi(Ri),Pi +

δt

2
fi(R)

)
≡ (R′′

i ,P
′′
i ) (125)

eiLpδt/2 (R′′
i ,P

′′
i ) =

(
R′′

i ,P
′′
i +

δt

2
fi(R′′)

)
(126)

=
(
Ri +

δt

Mi
Pi +

δt2

2Mi
fi(R),Pi +

δt

2
[fi(R) + fi(R′′)]

)
(127)

Noting that fi(R) = fi(t), fi(R′′) = fi(t+ δt), the last expression is nothing but the velocity Verlet
algorithm for (Ri(t+ δt),Pi(t+ δt)) .

In conclusion: the Verlet algorithm may be derived by a discretization of the time evolution
operator that conserves unitarity. Such property is crucial for any well-behaved algorithm one can
think of.

5.1.4 Canonical ensemble in MD

We are often interested in systems in thermal equilibrium with a thermal bath at temperature T :
the NV T or canonical ensemble, for which

ρNV T (R,P) =
g(N)
Z

e−H(R,P)/kBT (128)

where Z is the partition function:

Z = g(N)
∫
dRdPe−H(R,P)/kBT . (129)
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Integration over P gives for the partition function of N identical atoms:

Z = Zr/(N !λ3N ) (130)

where λ is the thermal wavelength:

λ =
h√

2πMkbT
(131)

and Zr is the configurational partition function:

Zr =
∫
dR1...

∫
dRne

−Ep(R)/kBT . (132)

In the canonical ensemble, the temperature is related to the expectation value of the kinetic energy:

〈
N∑

i=1

P2
i

2Mi
〉NV T =

3
2
NkBT. (133)

The canonical ensemble can be simulated using what is called Nosé-Hoover thermostat: an addi-
tional fictitious degree of freedom produces a dynamical friction force having the effect of heating
ions when the kinetic energy is lower than the desired value, cooling them in the opposite case.
Specifically, the equations of motion become

R̈i =
fi
Mi

− ζ̇Ṙi (134)

ζ̈ =
1
Q

[
N∑

i=1

MiṘ2
i − 3NkbT

]
(135)

where Q plays the role of “thermal mass”. The constant of motion for this system is

H̃ = H +
Q

2
ζ̇2 + 3NkbTζ (136)

but H̃ does not generate the dynamics (the dynamics is non-canonical). It can be shown that such
dynamics samples the canonical ensemble.

Although all thermodynamical properties could in principle be determined from the free energy
F , it is not possible to calculate directly F from a MD simulation. The free energy (like the
partition function and the entropy) cannot be simply expressed as a thermodynamical average
(like the energy). Specialized algorithms are needed for free energy calculation.

5.1.5 Constant-pressure MD

Very often we are interested in simulating systems kept at a given pressure P rather that occupying
a fixed volume V . Constant-pressure MD can be obtained by adding the volume V or, in a more
general case, the cell parameters, to the dynamical variables. In the simple case of a liquid, one
defines a Lagrangian:

L̃ =
1
2

N∑
i=1

Mi

(
V 1/3σ̇i

)2

− Ep({V 1/3σ}) +
1
2
WV̇ 2 − PV (137)

where σi = Ri/V
1/3 are scaled variables, P is the desired external pressure, and W is a (fictitious)

mass for V .
For a solid, we may be interested in knowing the equilibrium unit cell volume and form under a

given stress state (typically a constant external hydrostatic pressure) rather than working at fixed
cell and calculating the corresponding stress. In this case one introduces a matrix h, formed by the
unit cell vectors ai: h = (a1,a2,a3), and defines scaled variables Si as Si = h−1Ri. The extended
Lagrangian becomes

L̃ =
1
2

N∑
i=1

MiṠiGṠi − Ep({hS}) +
1
2
WTrḣtḣ− PV (138)

where G = hth is the metric tensor. The interest of variable-cell dynamics for solid-state systems
reside in the possibility to simulate structural phase transitions (under applied pressure but also
as a function of temperature).
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5.2 Car-Parrinello Molecular Dynamics

Implementations of MD using first-principle interatomic potential calculated from DFT, as in
Eq.(104), are widely used. All the MD machinery developed for classical interatomic potentials
can be used. However these implementation suffer from a serious drawback. MD is quite sensitive
to the quality of forces. If the forces are not the derivatives of the energy with high accuracy, the
MD simulation will have problems, appearing as a drift of quantities that should be conserved (like
e.g. the energy) from their values. The error on DFT forces is linear in the selfconsistency error
of the charge density (while for the DFT energy it is quadratic). As a consequence, a very good
and expensive convergence to self-consistency is required at every time step.

In 1985 Car and Parrinello (CP) proposed a different approach. They introduced a Lagrangian
for both electronic and ionic degrees of freedom:

L =
µ

2

∑
k

∫
dr|ψ̇k(r)|

2
+

1
2

∑
i

MiṘ2
i −Etot({R}, {ψ}) +

∑
k,l

Λkl

(∫
ψ∗k(r)ψl(r)dr− δkl

)
(139)

which generates the following set of equations of motion:

µψ̈k = Hψk −
∑

l

Λklψl, MiR̈i = −∂Etot

∂Ri
(140)

where µ is a fictitious electronic mass, and the Lagrange multipliers Λkl enforce orthonormality
constraints.

The electronic degrees of freedom are, in the typical implementation, expansion coefficients
of KS orbitals into PW. The forces acting on them at each time step are determined by the KS
Hamiltonian calculated from the current values of ψk and of Ri. The sum over orbitals for an
insulating system of n electrons includes n/2 states, assuming that spin polarization is neglected
(every orbital is occupied by two electrons). Most CP calculations are done for aperiodic systems
or for systems having a large unit cell (or supercell), so that typically only the Γ point (q = 0)
is used to sample the Brillouin Zone. Note that the entire Hamiltonian operator is not required:
only products Hψi are.

The forces acting on ions have the Hellmann-Feynman form:

∂Etot

∂Ri
=
∑

k

〈ψk|
∂V

∂Ri
|ψk〉 (141)

where V is the electron-ion interaction (pseudo-)potential. Note however that Hellmann-Feynman
theorem holds only on the exact ground state. The relation of Car-Parrinello forces to Hellmann-
Feynman forces is explained in the next section.

Orthonormality constraints are exactly imposed to the ψ at each time step, using an iterative
procedure that exploits the fact that the loss of orthonormality at each time step is small.

The simulation starts by bringing the electrons to the BO surface (that is, to the ground state)
at fixed ions and proceeds, using classical MD technology, on both electronic and ionic degrees
of freedom. With appropriate values of µ and δt, the electrons always remain close to the BO
surface, while the ions follow a trajectory that is close to the trajectory they would follow in the
BO approximation.

The Car-Parrinello dynamics has turned out to be very successful especially in the study of
low-symmetry situations: surfaces, clusters, liquids, disordered materials, and for the study of
chemical reactions.

5.2.1 Why Car-Parrinello works

The reasons why the Car-Parrinello dynamics works so effectively are quite subtle. The dynamics
for the electrons is purely classical (and fictitious: it has nothing to do with real electron dynamics).
As a consequence the energy would tend to equipartition between electronic and ionic degrees of
freedom, causing an energy transfer from ionic to electronic degrees of freedom. This does not
happen (and must not happen, otherwise the electrons will leave the BO surface) even on long
simulation times. If we analyze the dynamics in terms of oscillators, we find that the typical
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frequencies associated to the fictitious electron dynamics are given by ωel ∼
√

(εi − εj)/µ, if there
is a gap in the electronic spectrum. For ions, the oscillator frequencies are the typical phonon
frequencies. It turns out that, for reasonable values of the gap and of the fictitious electron
mass µ, the maximum phonon frequency is much smaller than the minimum electron frequency:
ωph

max << ωel
min. The energy transfer from ionic to electronic degrees of freedom is as a consequence

very small even on long times.
This situation generates a fast electron dynamics that keeps the electrons close to the BO

surface and averages out the error on the forces, so that the much slower ionic dynamics turns
out to be correct (that is, very close to the BO dynamics one would obtain from highly converged
selfconsistency). A detailed explanation is contained in a 1991 paper by Pastore, Smargiassi, and
Buda.

If there is no gap in the electronic spectrum, or if the gap is too small, the above picture breaks
down. It may be needed to add separate thermostats to ionic and electronic degrees of freedom in
order to prevent the flow of energy from the former to the latter.

5.2.2 Choice of the parameters

The choice of the electronic mass µ must strike a compromise between conservation of adiabaticity
(favored by small values of µ, see above) and maximum admissible time step (that is limited by
the maximum electronic frequency, so that the heaviest µ, the smaller ωel

max, the larger δtmax.
Typically µ ∼ 200 amu (1 amu=1 electron mass). For large gap systems, such as SiO2 or H2O, in
which adiabaticity problems are minor, µ may be increased up to ∼ 500-700 amu and even more.
Such values of µ correspond to a typical timestep of ∼ 0.1− 0.2fs.

In order to increase the time step, it is customary to introduce the so-called mass precondition-
ing. In a PW basis set, the time step is limited by high-frequency components with the largest G
vector. These components are dominated by the kinetic energy h̄2G2/2µ. Since electronic masses
are fictitious, it is advantageous to introduce a mass that for high-frequency components goes like
µ(G) ' µ(1 + G2). The corresponding equations of motions are only slightly more complex.

It should be noticed, however, that too heavy electron masses adversely affect the quality of
simulation via an “electron drag” effect. The electron motion follow the ionic motion with some
delay, thus introducing a drag force that appears as if the ions were heavier than their masses.
This “mass renormalization” must be taken into account when extracting vibrational frequencies
from MD runs. In some cases, this effect can introduce a nonnegligible deviation from the true
ionic dynamics.

6 Appendix

6.1 Functionals and functional derivatives

The concept of functional is the generalization of the concept of function: function associates a
value with another value, while a functional associates a value with a given function. The functional
dependence is indicated by square brackets, like in E[n(r)].

Functional derivatives δF [f(x)]/δf(y) are defined implicitly through the expression

δF =
∫ (

δF [f(x)]
δf(y)

)
δf(y)dy (142)

where δF is the first-order variation of F [f(x)] produced by an arbitrary variation δf(y) of f(y).
Functional derivatives obeys some simple rules similar to those for normal derivatives. If f(x) is a
function,

δf(x)
δf(y)

= δ(x− y). (143)

If a functional is the product of two functionals F [f(x)] and G[f(x)],

δF [f(x)]G[f(x)]
δf(y)

=
δF [f(x)]
δf(y)

G[f(x)] + F [f(x)]
δG[f(x)]
δf(y)

. (144)
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The following “chain relation” applies:

δF [f(g(x))]
δg(z)

=
∫

δF

δf(y)
δf(y)
δg(z)

dy. (145)

Note that the functional dependence is sometimes removed in functional derivatives in order to
simplify the notations.

6.2 Iterative diagonalization

Iterative diagonalization can be used whenever
i) the number of states to be calculated is much smaller than the dimension of the basis set,

and
ii) a reasonable and economical estimate of the inverse operator H−1 is available.
Both conditions are satisfied in practical calculation in a PW basis set: the number of PW’s is

usually much larger than the number of bands, and the Hamiltonian matrix is dominated by the
kinetic energy at large G ( the Hamiltonian is diagonally dominant).

Iterative methods are based on a repeated refinement of a trial solution, which is stopped
when satisfactory convergence is achieved. The number of iterative steps cannot be predicted in
advance. It depends heavily on the structure of the matrix, on the type of refinement used, and on
the starting point. A well-known and widely used algorithm is due to Davidson. In this method,
a set of correction vectors |δψi〉 to the M trial eigenvectors |ψi〉 are generated as follows:

|δψi〉 =
1

D − εi
(H − εi)|ψi〉 (146)

where the εi = 〈ψi|H|ψi〉 are the trial eigenvalues. The |δψi〉’s are orthogonalized and the Hamil-
tonian is diagonalized (with conventional techniques) in the subspace spanned by the trial and
correction vectors. A new set of trial eigenvectors is obtained and the procedure is iterated until
convergence is achieved. A good set of starting trial vectors is supplied by the eigenvectors at the
preceding iteration of the potential.

An important point is the following. The Hamiltonian matrix is never explicitly required
excepted for its diagonal part. Only Hψi products are required, which can be calculated in a very
convenient way by applying the dual-space technique. In fact the kinetic energy is diagonal in
G-space, whereas the local potential term is diagonal in real space. Using FFT’s (see below) one
can go quickly back and forth from real to reciprocal space and perform the products where it is
more convenient. There is still a nonlocal term which appears to require the storage of the matrix.
The trick is to write VNL in a separable form:

VNL(k + G,k + G′) =
Nat∑
µ=1

n∑
j=1

fµ
j (k + G)gµ

j (k + G′), (147)

where n is a small number and Nat is the number of atoms in the unit cell. This allows us to
perform the products by storing only the f and g vectors.

6.3 Fast-Fourier Transform

An important computational advantage of PW’s is the existence of very fast algorithms (known as
the Fast Fourier-Transform, FFT) to perform the discrete Fourier transforms. This allows simple
and fast transformation from reciprocal to real space and vice versa. The basic one-dimensional
FFT executes the following transformation:

fi =
N−1∑
j=0

gje
2πij/N , i = 0, ..., N − 1 , (148)

and its inverse

gi =
1
N

N−1∑
j=0

fje
−2πij/N . (149)
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The transformation is usually performed “in place”, that is the result is overwritten on the input
vector. This takes O(N logN) operations instead of O(N2) of a straightforward summation. In
three dimensions the discrete Fourier transform maps a function f̃(gi) in reciprocal space into a
function f(ri) in the unit cell (and vice versa):

gi = i1G1 + i2G2 + i3G3, ri =
j1
N1

R1 +
j2
N2

R2 +
j3
N3

R3 (150)

where R1,R2,R3 (G1,G2,G3) are the three fundamental translations that generate the real-
space (reciprocal) lattice, i1 = −N1/2, ..., N1/2, and so on. N1, N2, N3 must be sufficiently large
to include all available Fourier components; the more Fourier components, the larger the grid in
G-space and the finer the grid in R-space. It is easily verified that this 3-d FT can be done in a
very fast way by performing 3 inter-nested 1-d FFT.

6.4 Conjugate Gradient

In the following let us consider a function f(x) of the variables x ≡ (xi, ..., xN ) and its gradients
g(x) = −∇xi

f(x).
The first obvious minimization algorithm that comes to mind is steepest descent (SD). This

consists in minimizing f(x) along the direction g(x). Once the minimum along such direction is
reached, the gradient is recalculated, a new minimum is sought along the new direction of the
gradient, and so on.

SD is a prototypical direction set method: the gradient is eliminated one component at the time
along a set of directions. In SD every direction is orthogonal to the previous one (by construction).
SD is not bad far from convergence, but it becomes very bad very quickly. A reason for bad
convergence is that the set of directions in SD is not optimal. Let us consider such aspect in more
detail in the following.

The function in the region not far from the minimum is approximately quadratic:

f(x) ' 1
2

tx ·A · x− b · x + f0, g(x) = −A · x + b (151)

where A is a matrix, b is a vector (not necessarily known).
An optimal set of directions should ensure that when we search for a minimum along the new

direction, we do not lose what we have gained in the preceding step. Let us assume that at step
n we reached the minimum along line hn. This implies: g(xn) · hn = 0. We move from xn along
direction hn+1. The gradient change δg is proportional to A ·hn+1. If we impose that this change
has no component along all previous minimization directions hn, we get the condition

hn ·A · hm = 0 (152)

that defines conjugate directions. The simpler conjugate gradient (CG) algorithm is as follows:

1. start by minimizing along h0 = g0 = −∇f(x0). If the function is quadratic, the minimum
can be found analytically: x1 = x0 + λ0h0, where λ0 = −h0 · g0/h0 ·A · h0.

2. find the next direction h1 = g1 + γ1h0 and impose that it is conjugate to the preceding one,
Eq.152. One finds γ1 = g1 · g1/g0 · g0.

3. iterate the procedure until the desired convergence. The sequence of gradients gn and of
conjugate gradients hn is found to obey gn · gm = 0, gn · hm = 0, and Eq.152, for all n,m.

If the problem is not quadratic, so that A is not a priori known, the algorithm remain the same,
but the analytical determination of the line minimum in step 1) is not performed. A numerical
minimization along the h directions is performed and the gradient g is calculated at the line
minimum.

CG converges much better than SD, with negligible additional effort. If the problem is purely
quadratic, exact convergence is guaranteed to be reached in N steps. This would take O[N3]
operations, not better than the inversion of A. Approximate convergence, however, can be reached
in a much smaller number of steps. Moreover CG can be applied in presence of large matrices A
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for which inversion is impractical or impossible. Only the results of operator A on trial vectors
A · x are required, not the entire operator.

In general, the rate of convergence is determined by the ratio between the largest and smallest
eigenvalues of the matrix A: the closer to 1, the better. Since in real-life example such ratio
may considerably differ from 1, a technique known as preconditioning is often used to produce an
equivalent problem for which such ratio is closer to 1, thus yielding better convergence properties.

The CG method, in many variants, is much used not only for structural optimization but also
as an alternative method to self-consistency for finding the minimum of the energy functional at
fixed ions (“electronic” minimization). In this case the variables x are the expansion coefficients of
KS orbitals into the PW or any other basis set. The algorithm becomes slightly more complicated
because orthonormality constraints between orbitals must be taken into account.

Other minimization methods The CG method does not use explicitly the second derivative
matrix A or its inverse A−1. This is an advantage if the number of variables in the problem is large
(as i.e. in the electronic minimization problem mentioned above): the storage of an approximate
A or A−1 would be prohibitely large. For structural optimization however the number of variables
never exceeds a few hundreds. Moreover it is conceivable to find with little effort reasonable
approximations to A, which is related to the force constant matrix. Quasi-Newton methods make
use of some guess for A and produce an iterative refinement of A (or of A−1) using the available
information.
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7 Electronic screening: basics

We want to study the effect of applying a perturbation δV0(r) to a system of electrons under an
external potential V0(r). At linear order in the perturbation, the perturbation produces a variation
of the charge density δn(r) proportional to δV0(r′):

δn(r) =
∫
χ(r, r′)δV0(r′)dr′ (153)

where χ(r, r′) is defined as the density response of the system. We remark that δn(r) is a functional
of δV0(r), and that χ(r, r′) is a functional derivative:

χ(r, r′) =
δn(r)
δV0(r′)

. (154)

The polarization δn(r) produces an electrostatic field that screens the perturbing potential
δV0(r). The screened potential δV (r) becomes, from Poisson’s equation:

δV (r) = δV0(r) + e2
∫

δn(r′)
|r− r′|

dr′ (155)

that is:

δV (r) = δV0(r) + e2
∫
χ(r′, r′′)
|r− r′|

δV0(r′′)dr′dr′′ (156)

=
∫ (

δ(r− r′) + e2
∫
χ(r′′, r′)
|r− r′′|

dr′′
)
δV0(r′)dr′ (157)

=
∫
ε−1(r, r′)δV0(r′)dr′. (158)

For an applied electrostatic potential, the response function we have called ε−1(r, r′) is nothing
but the dielectric response function as usually defined in electrostatics.

In summary, χ(r, r′) yields the charge response from a bare (external) perturbing potential via

δn(r) =
∫
χ(r, r′)δV0(r′)dr′ (159)

while ε−1(r, r′), defined as

ε−1(r, r′) = δ(r− r′) + e2
∫
χ(r′′, r′)
|r− r′′|

dr′′ (160)

yields the screened potential from the bare one via

δV (r) = ε−1(r, r′)δV0(r′)dr′. (161)

Their determination is a difficult many-body problem.
Several approximate models for dielectric screening are known. Let us consider a homogeneous

and isotropic medium. We will expect that χ(r, r′) = χ(r − r′) and the same for ε. In reciprocal
space we will have the so-called diagonal screening:

δn(k) = χ(k)δV0(k). (162)

The corresponding dielectric response is

ε−1(k) = 1 +
4πe2

k2
χ(k) ≡ 1

ε(k)
(163)

and the screened potential

δV (k) =
δV0(k)
ε(k)

. (164)

For metals, an approximate form for ε(k) is given by Thomas-Fermi theory:

ε(k) = 1 +
k2

TF

k2
(165)

where kTF is a parameter depending on the homogeneous charge density.
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7.1 Electronic screening: DFT linear-response theory

Let us assume a system of electrons obeying KS equations:(
− h̄2

2m
∇2 + VKS(r)

)
ψi(r) = εiψi(r) (166)

where VKS(r) = V (r) + VH(r) + Vxc[n(r)] and the charge density is generalized to the case of
noninteger occupancy fi:

n(r) =
∑

i

fi|ψi(r)|2. (167)

An external potential δV (r) modifies Vks through δVks = δV0(r) + δVH(r) + δVxc[n(r)]. Let us
consider first-order changes (linear response). We introduce am auxiliary quantity χ0(r, r′), the
independent-particle polarizability, defined via

δn(r) =
∫
χ0(r, r′)δVKS(r′)dr′. (168)

This is the functional derivative of the charge density with respect to the screened KS potential

χ0(r, r′) =
δn(r)

δVKS(r′)
(169)

(compare with the definition of χ(r, r′) above). The quantity χ0(r, r′) can be easily derived from
perturbation theory. The first-order variation of KS orbitals is given by

δψi(r) =
∑
j 6=i

ψj(r)
〈ψj |δVks|ψi〉
εi − εj

(170)

(note that at linear order the new KS orbitals ψi+δψi are orthonormal) and the first-order variation
of the charge density is:

δn(r) =
∑

i

fiδψ
∗
i (r)ψi(r) + c.c. =

∑
i,j,i6=j

fi

(
ψ∗i (r)ψj(r)

〈φj |δVks|ψi〉
εi − εj

+ c.c

)
. (171)

The last equation can be rewritten in more symmetric form:

δn(r) =
∑

i,j,i6=j

fi − fj

εi − εj
ψ∗i (r)ψj(r)〈ψj |δVks|ψi〉 (172)

explicitly showing that the contribution from i, j states vanishes if both are fully occupied. For a
closed-shell (insulating) system:

δn(r) = 4Re
∑
v,c

ψ∗v(r)ψc(r)
〈ψc|δVks|ψv〉
εv − εc

(173)

where v denotes filled (valence) states, c empty (conduction) states. We can write the independent-
particle polarizability χ0(r, r′) as

χ0(r, r′) = 4Re
∑
v,c

ψ∗v(r)ψc(r)ψ∗c (r′)ψv(r′)
εv − εc

. (174)

Such expression can be recast into the form

χ0(r, r′) = 4Re
∑

v

ψ∗v(r)Pc
1

εv −HKS
Pcψv(r′) (175)

where Pc is the projector operator over conduction states Note that:

• this expression is valid only if VKS is described by a local potential: VKS = VKS(r)

• χ0(r, r′) is a ground-state property, even if it apparently depends on excited states.
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7.2 Physical Response operator

The above expression provides to us a way to calculate a “fake” response operator χ0(r, r′), that
gives the response to a given screened potential. How does it lead to the “real” response operator
χ(r, r′)?

The screening from the Hartree potential, at first order, is:

δVH(r) = e2
∫

δn(r′)
|r− r′|

dr′ = e2
∫
vc(r, r′)δn(r′)dr′ (176)

where vc(r, r′) = 1/|r− r′|. From exchange-correlation:

δVxc(r) =
∫
fxc(r, r′)δn(r′)dr′ (177)

where

fxc(r, r′) =
δVxc(r)
δn(r′)

=
δ2Exc

δn(r)δn(r′)
. (178)

In operator notations:
δn = χ̂0δV = χ̂0

(
δV0 + v̂cδn+ f̂xcδn

)
(179)(

1− χ̂0v̂c − χ̂0f̂xc

)
δn = χ̂0δV0 (180)

δn =
(
1− χ̂0v̂c − χ̂0f̂xc

)−1

χ̂0δV0 (181)

and finally

χ̂ =
(
1− χ̂0v̂c − χ̂0f̂xc

)−1

χ̂0 =
(
χ̂−1

0 − v̂c − f̂xc

)−1

(182)

(remember that these are operators!!!).
Early calculations used the RPA (Random Phase Approximation), consisting in neglecting the

fxc term. The addition of exchange-correlation at the LDA level is however straightforward: the
exchange-correlation function fxc is a local operator

fxc(r, r′) = δ(r− r′)
dVxc(n)
dn

∣∣∣∣
n=n(r)

. (183)

The major problem of such straightforward approach is how to invert the operators. In solids, the
response function χ0(r, r′) can be expressed in reciprocal space as a matrix (the dielectric matrix):
χ0(k + q + G,k + q + G′) for the response to an external perturbation of wavevector q. The
operations between operators becomes matrix operations over infinite matrices. By truncating the
matrices at an appropriate G one has a practical scheme for calculating response operators.

7.3 Density-Functional Perturbation Theory

The method described in the preceding section is computationally very heavy. In fact what we
calculate is the response to all possible perturbations. We are often interested to the response
to a specific perturbation instead. In this sense the calculation of the dielectric matrix is an
overkill. Moreover the method is not suitable for nonlocal perturbing potential. Since most DFT
calculations rely on nonlocal PP’s, this is a severe limitation.

An alternative method is the following. We consider the basic equations

δVks = δV0 + v̂cδn+ f̂xcδn (184)

and

δn(r) = 4Re
∑
v,c

ψ∗v(r)ψc(r)
〈ψc|δVks|ψv〉
εv − εc

(185)

solve self-consistently. The sum over unoccupied states is better expressed via an implicit summa-
tion: ∑

c

ψc(r)
〈ψc|δVks|ψv〉
εv − εc

= Pc
1

εv −HKS
PcδVksψv. (186)
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The projector over empty states can be written as

Pc = 1− Pv = 1−
∑

v

|ψv〉〈ψv| (187)

so that conduction bands are never explicitly required. The variation of the charge density can be
recast into the form

δn(r) = 4Re
∑

v

ψ∗v(r)Φv(r) (188)

where the right-hand term Φv(r) :

Φv = Pc
1

εv −HKS
PcδVksψv (189)

is obtained from the solution of a linear equation:

(εv −HKS)PcΦv = PcδVksψv. (190)

The above equations define a self-consistent procedure that can be solved by iteration, much in
the same way as in the solution of KS equations.

A typical application of such procedure is the calculation of phonon dispersion spectra. The
perturbing potential is in this case the displacement of an ion. Once δn(r) is calculated, the
second-order expansion term of the energy, E(2), can be easily calculated. In the next section we
show that

E(2) =
1
2

∫
δn(r)δV0(r)dr (191)

holds.

7.4 Total energy expansion

Let us consider the many-body Hamiltonian (not the KS Hamiltonian) and assume that the external
potential depend on some external parameter λ: V = Vλ. The energy will be

E(λ) = 〈Ψλ|T + U + Vλ|Ψλ〉 (192)

where Hλ = T + U + Vλ, T is the many-body kinetic energy, U the Coulomb interaction, and

Hλ|Ψλ〉 = Eλ|Ψλ〉. (193)

The first-order derivative of the energy with respect to λ is

dE(λ)
dλ

= 〈dΨλ

dλ
|T + U + Vλ|Ψλ〉+ 〈Ψλ|

dVλ

dλ
|Ψλ〉+ 〈Ψλ|T + U + Vλ|

dΨλ

dλ
〉 (194)

= Eλ

(
〈dΨλ

dλ
|Ψλ〉+ 〈Ψλ|

dΨλ

dλ
〉
)

+ 〈Ψλ|
dVλ

dλ
|Ψλ〉. (195)

The term between brackets vanishes because it is equal to the derivative of a constant: d/dλ〈Ψλ|Ψλ〉.
We find the well-known Hellmann-Feynman result:

dE(λ)
dλ

= 〈Ψλ|
dVλ

dλ
|Ψλ〉 (196)

stating that there is no contribution to the first-order energy derivative from |dΨλ/dλ〉.
Let us consider 2nd-order derivatives:

d2E(λ)
dλ2

=
d

dλ
〈Ψλ|

dVλ

dλ
|Ψλ〉 (197)

= 〈dΨλ

dλ
|dVλ

dλ
|Ψλ〉+ 〈Ψλ|

dVλ

dλ
|dΨλ

dλ
+ 〈Ψλ|

d2Vλ

dλ2
|Ψλ〉. (198)
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Let us write the energy, potential and wavefunctions as a power series expansion with respect to
the external parameter λ:

E(λ) ' E(0) + λE(1) +
1
2
λ2E(2) + ... (199)

V (λ) ' V (0) + λV (1) +
1
2
λ2V (2) + ... (200)

Ψ(λ) ' Ψ(0) + λΨ(1) +
1
2
λ2Ψ(2) + ... (201)

(202)

The above results can be resumed into the formula

E(1) = 〈Ψ(0)|V (1)|Ψ(0)〉 (203)

and
E(2) = 〈Ψ(0)|V (2)|Ψ0〉+

1
2

(
〈Ψ(1)|V (1)|Ψ(0)〉+ 〈Ψ(0)|V (1)|Ψ(1)〉

)
. (204)

Note that there is no contribution to the second-order energy term from Ψ(2)〉. This is a special
case of a general result known as 2n+1 theorem: the knowledge of wavefunctions up to order n in
the expansion determines the energy terms up to order 2n+ 1. For a local potential we can recast
the above result into a simpler form:

E(1) =
∫
n(0)(r)V (1)(r)dr, E(2) =

∫
n(0)(r)V (2)(r)dr +

1
2

∫
n(1)(r)V (1)(r). (205)

The form of higher-order terms becomes increasingly complex with increasing order. The
2n+1 theorem can however be demonstrated in one line (courtesy of Stefano de Gironcoli, SISSA,
Trieste). Let us consider the energy at each λ as a functional of the charge density and of the
external potential:

Eλ = E[Vλ, nλ] = E[Vλ, n
(0) + λn(1) + ...+

1
i!
λin(i)] +O(λ2i+2). (206)

The last step is a consequence of the variational character of the energy: the first term we neglect
in the charge density is O(λi+1), so the error on the energy will be of the order of the square of
the error on the charge density.
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