Hydrogen complexes in Mn$_x$Ga$_{1-x}$As dilute magnetic semiconductors: theoretical results

P. Giannozzi

Scuola Normale Superiore di Pisa and Democritos National Simulation Center, Italy

F. Filippone and A. Amore Bonapasta

Istituto di Struttura della Materia (ISM) del Consiglio Nazionale delle Ricerche, Italy

April 5, 2005

Talk presented at 12th Brazilian Workshop on Semiconductor Physics, São José dos Campos
Dilute Magnetic Semiconductors (DMS)

Semiconductors exhibiting magnetic properties (ideally, room-temperature ferromagnetism) hold promises as new materials for innovative devices based on spin electronics, or *spintronics*

Most studied material: Mn$_x$Ga$_{1-x}$As, with x up to $\sim 5 \div 6\%$

Current picture of Mn$_x$Ga$_{1-x}$As:

- Substitutional Mn provides *both* a localized moment from the half-filled d shell *and* a hole
- The hole is mostly *delocalized* on neighboring As atoms
- The hole is *crucial* for ferromagnetism
- Mn acts as a shallow *acceptor*, with an acceptor level at $E \sim 100$ meV
- Magnetic moment per Mn atom: $\mu \simeq 4\mu_B$
Hydrogenation of semiconductors

H can easily diffuse into semiconductors

General characteristics of hydrogenation:

- H can *saturate* dangling bonds and *passivate* defects (i.e. remove their electrical activity)
- H is an *amphoteric* impurity: it may passivate both donors and acceptors
- H passivation properties *depend* on the occupied site
- H is a structural local probe: it forms *complexes* with impurities, easily detected with IR spectroscopy

Exposure to H is a tool to modify magnetic properties and to achieve selective removal of ferromagnetism
Hydrogenation of DMS: Experiments

formation of H-Mn complexes: H mode observed at 2140 cm⁻¹

dramatic reduction of density of carriers

ferromagnetism disappears, replaced by paramagnetism
Hydrogenation of DMS: current picture

- H removes holes from the band structure
- No holes, no ferromagnetism (which needs hole-mediated exchange)
- H-Mn complex expected to be similar to H-Zn and H-Mg complexes in Mg- and Zn-doped GaAs: H backbonded at As neighbor of Mn

Open questions:

- passivation (i.e. removal of the acceptor level) or compensation (i.e. filling of the level)?
- geometry of Mn-H complexes? is H really backbonded to As or does it prefer a different site?
Theoretical framework: DFT-LSDA

Energy functional under an external potential $V(r)$:

$$ E_{DFT}[n_+(r), n_-(r)] = T_0 + \int n(r)V(r)dr + E_{II} + E_H + E_{xc}[n_+(r), n_-(r)] \quad (1) $$

$n_\sigma(r) = \text{charge density with spin polarization } \sigma$, $n(r) = n_+(r) + n_-(r)$ total charge density
$T_0 = \text{kinetic energy}$, $E_{II} = \text{nuclear interaction energy}$, $E_H = \text{electrostatic (Hartree) energy}$

Minimization of the above functional yields the Kohn-Sham equations:

$$ \left[-\frac{\hbar^2}{2m}\nabla^2 + V(r) + e^2 \int \frac{n(r')}{|r-r'|}dr' + V_{xc}^\sigma(r) \right] \psi_{k,v}^\sigma(r) = e_{k,v}^\sigma \psi_{k,v}^\sigma(r) \quad (2) $$

Exchange-correlation potential:

$$ V_{xc}^\sigma(r) = \frac{\delta E_{xc}}{\delta n_\sigma(r)} \quad (3) $$

Charge density:

$$ n_\sigma(r) = \sum_{k,v} f_{k,v}^\sigma |\psi_{k,v}^\sigma(r)|^2 \quad (4) $$
Theoretical framework: DFT-LSDA (2)

We use pseudopotentials and a plane-wave basis set in a supercell geometry

- exchange-correlation functional: spin-polarized, gradient-corrected PBE (gradient corrections needed, simple LDA yields bad results for geometry of MnAs)

- Supercell geometry: consider a superset with enlarged period of the original zincblende lattice, replace one Ga with Mn. With a 64-atom supercell, 1 Mn/supercell: \(x = \frac{1}{32} = 0.03125 \)

- \(\mathbf{k} \)-point grid: Monkhorst-Pack 444 grid

- ultrasoft (Vanderbilt) pseudopotentials – very useful for systems containing Mn!

- kinetic-energy cutoff (determines the dimension of the basis set): 25 Ry

All calculations performed using PWscf (http://www.pwscf.org)
LSDA results

```
“abMn”: E=0 eV

H bound to Mn in antibonding position: 
\[ d_{H-Mn} = 1.60\text{Å}, \quad \nu_H = 1761 \text{ cm}^{-1}, \quad \mu = 3\mu_B \]

```

```
“bcAs”: E=0.33 eV

H off-axis in the Mn-As bond: 
\[ d_{H-Mn}=1.62\text{Å}, \quad d_{H-As}=1.75\text{Å} \]
\[ \nu_H = 1671 \text{ cm}^{-1}, \quad \mu = 5\mu_B \]

```

```
“abAs”: E=0.59 eV

H bound to As in antibonding position: 
\[ d_{H-As}=1.58\text{Å}, \quad \nu_H = 1926 \text{ cm}^{-1}, \quad \mu = 5\mu_B \]

```

Results are inconsistent with experiments:

- The preferred configuration has H bound with Mn and Mn in a five-fold coordination
- The value of \(\mu \) indicates pairing of H with one \(d \) state from Mn
- Passivation is not achieved: the acceptor level is still present at \(\sim 120 \text{ meV} \)
- Vibrational frequency is much too low (exp: \(\nu_H = 2143 \text{ cm}^{-1} \))
LSDA results (2)

Other studied sites resulting in higher-energy configurations:

```
"bcAsLin": E=0.53 eV
"bcAsGa": E=0.66 eV
"abAsGa": E=1.02 eV
```

H in the Mn-As bond (linear):
\[d_{\text{H-Mn}} = 1.82\text{Å}, \quad d_{\text{H-As}} = 1.56\text{Å} \]
\[\nu_{\text{H}} = 2119 \text{ cm}^{-1}, \quad \mu = 5\mu_B \]

H in Ga-As bond far from Mn:
\[d_{\text{H-Ga}} = 1.83\text{Å}, \quad d_{\text{H-As}} = 1.55\text{Å} \]
\[\nu_{\text{H}} = 2179 \text{ cm}^{-1}, \quad \mu = 5\mu_B \]

H bound to As in antibonding position:
\[d_{\text{H-As}} = 1.54\text{Å} \]
\[\nu_{\text{H}} = 2162 \text{ cm}^{-1}, \quad \mu = 5\mu_B \]

Is there formation of di-hydrogen complexes?
LSDA results: H2 complexes

E=0.00 eV

$d_{H-Mn} = 1.59\AA$, $d_{H-As}=1.55\AA$
$
u_{H-Mn}=1829\,cm^{-1}$, $\nu_{H-As}=2261\,cm^{-1}$
No passivation

E=0.37 eV

$d_{H-Mn} = 1.57\AA$, $d_{H-As}=1.54\AA$
$
u_{H-Mn}=1880\,cm^{-1}$, $\nu_{H-As}=2162\,cm^{-1}$
LSDA and highly correlated materials

Simple LSDA approaches can have serious trouble in dealing with highly correlated materials (i.e. atoms with localised, atomic-like electronic states).

Fundamental problem: the inability of LSDA to find the correct occupancy of atomic-like electronic states may lead to qualitatively wrong results – but with the correct occupancy, results are quite good.

Deep reason: the lack of discontinuity in all current approximations to the exchange-correlation functional favors fractionary occupations of localised states.

In Mn$_x$Ga$_{1-x}$As, LSDA yields too shallow Mn 3d bands: ~ 2.5eV below the top of the valence band, versus ~ 4eV experimentally – corrected by LDA+U calculations (Shick et al, PRB 69, 125207 (2004)).
DFT for highly correlated materials: the LDA+U approach

LDA+U: add a Hubbard-like correlation term to the energy (Anisimov et al, PRB 44, 943 (1991); PRB 48, 16929 (1993)). Simplified form:

\[
E_{LDA+U}[n(r)] = E_{DFT}[n(r)] + E_{U}[n(r)], \quad E_{U}[n(r)] = \frac{U}{2} \sum_{\sigma} \text{Tr}[n^\sigma(1 - n^\sigma)]
\]

(5)

where \(n^\sigma \) is the matrix of orbital occupancies for a set of atomic-like states \(\phi_m \):

\[
n^\sigma_{mm'} = \sum_{\sigma} \sum_{k,v} f^\sigma_{k,v} \langle \psi^\sigma_{k,v} | P_{mm'} | \psi^\sigma_{k,v} \rangle, \quad P_{mm'} = | \phi_m \rangle \langle \phi_{m'} |
\]

(6)

Value of Hubbard \(U \) parameter?

- use as empirical, adjustable parameter
- estimate from experiments (i.e. difference between photemission and inverse photoemission)
- calculate from first principles

For Mn, typical value from experiments is \(U \simeq 4 \) eV.
Relative energies of the various sites as a function of U:

$U \approx 4$ eV is also the value for which the Mn $3d$ shift towards their correct position!
Geometry of the ground state:
H slightly off-axis in the Mn-As bond
\(d_{\text{H-Mn}} = 1.88 \text{Å}, d_{\text{H-As}} = 1.55 \text{Å} \)
\(\nu_{\text{H}} = 2030 \text{ cm}^{-1} \)

Electronic structure: \(\mu = 5\mu_B \), acceptor level completely removed (passivated)
(Tentative) Conclusions

- Simple LSDA does not account for the properties of H complexes in dilute magnetic semiconductor $\text{Mn}_x \text{Ga}_{1-x} \text{As}$: correlation effects are crucial.

- Simple LDA+U seems to do the job.

- H sits in the center of the bond between Mn and As, somewhat off axis.

- H passivates the Mn impurity.