It was about 10 years ago when I helped organise the second conference on the Foundations of Information Science and published proceedings with the title “The Quest for a Unifying Theory of Information”. While a considerable number of scientists still today disbelieve in the feasibility of a single generic concept of information, there are several attempts to hypothesise or theorise information in a unifying manner carried out by a strong minority of scientists. E.g., a question put forward by Hans von Baeyer to the audience at the recent International Conference on Foundations of Information Science held in Paris in 2005 showed a fifty-fifty vote for either option. However, the camp of the “unifiers” itself is heterogenous. The approach I am espoused with tries to find its basis in the so-called science of complexity, that is, in a linkage to concepts of self-organisation. Here, too, there are a number of options to do that.

Just to name but a few, this is an incomplete list of authors:

- Morin
- Haken
- Ebeling
- Kornwachs
- Fuchs-Kittowski
- Stonier
- Brier
- Kauffman et al.
- Moreno et al.

The most recent ideas which came to my attention are the latter two. Stuart Kauffman, Robert Logan, and four other authors write in their manuscript from May 2006 “Propagating Organization: An Enquiry” that information is the constraint (known as downward causation) whose function is to propagate the organisation of a system. Alvaro Moreno and Kepa Ruiz-Mirazo describe “Information as a Decoupling Mechanism in the Origins of Life” (which is the subtitle of their article “The Maintenance and Open-ended Growth of Complexity in Nature”, in: Capra, F., Juarrero, A., Sotolongo, P., van Uden, J. (eds.), Reframing Complexity, ISCE Publishing, Mansfield 2007).

I would like to discuss ideas like these in the light of my own idea of how to couple information processes to different types of real-world systems as a contribution to a taxonomy of complexity information concepts.